Answer:
Maximum area possible
f(max) = 3906,25 ft²
Dimensions:
a = 62,5 ft
w = 62,5 ft
Step-by-step explanation:
Perimeter of the rectangular fencing P = 250 feet
And sides of the rectangle a and w (width of rectangle)
Then
A = a*w
2a + 2w = 250 ⇒ a = (250 -2w)/ 2 ⇒ a = 125 - w
f(w) = (125 - w ) *w f(w) = 125w - w²
Taking derivatives both sides of the equation
f´(w) = 125 - 2w f´(w) = 0 125 - 2w = 0
w = 125/2
w = 62,5 ft ⇒ a = 125 - 62,5
a = 62,5 ft
f(max) = ( 62,5)²
f(max) = 3906,25 ft²
Answer:
angle1=70
angle2=65
angle4=115
angle7=45
angel6=45
angle5=45
Step-by-step explanation:
110+angle1 = 180
angle1 =180-70
angle1 = 70
115+angle2=180
angle2=180-115
angle2=65
angle4=115 because lines are parallel
angle1+angle2+angle7=180 because triangle
70+65+angle7=180
135+angle7=180
angle7=180-135
angle7=45
angel6=45
angle5=45
Answer:29m^2+
405/2
Step-by-step explanation: