<u>Answer </u><u>:</u><u>-</u>
Given inequality ,
- -5x +3y > 12
- 3y > 5x + 12
- y > 5/3x + 12/3
- y > 5/3x + 4
From the options ,
<u>When </u><u>x </u><u>is </u><u>3</u><u> </u><u>and </u><u>y </u><u>=</u><u> </u><u>9</u>
- y >1* 5 + 4
- y > 5 +4
- 9> 9 ( Not possible )
<u>When</u><u> </u><u>x </u><u>is </u><u>-</u><u>5</u><u> </u><u>y</u><u> </u><u>is </u><u>5</u><u> </u>
- y > 5/3*-5 + 4
- y > -8.3 + 4
- 5 > -3.7 ( Possible )
<u>When </u><u>x </u><u>is </u><u>3</u><u> </u><u>y </u><u>is </u><u>-</u><u>6</u><u> </u>
- y > 5 + 4
- -6 > 9 ( Not possible )
<u>When </u><u>x </u><u>is </u><u>-</u><u>2</u><u> </u><u>y </u><u>is </u><u>-</u><u>5</u><u> </u>
- y > -3.33 + 4
- -5 > -0.67 ( Possible )
<u>When </u><u>x </u><u>is </u><u>2</u><u> </u><u>y </u><u>is </u><u>8</u><u> </u>
- y > 3.33 + 4
- 8 > 7.77 ( possible )
<u>When</u><u> </u><u>x </u><u>is </u><u>-</u><u>6</u><u> </u><u>y </u><u>is </u><u>0</u><u> </u>
- y > -10 +4
- 0 > -6 ( possible )
Step-by-step explanation:
thanks for the free points!
have a great day!
Answer:
<h3>$ 20 </h3>
Step-by-step explanation:

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>Can</em><em> </em><em>I</em><em> </em><em>have</em><em> </em><em>the</em><em> </em><em>brainliest</em><em> </em><em>please</em><em>?</em>
<em>Have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>
The translation of the question given is
A line that passes through the points A (2,1) and B (6,3) and another line passes through A and through the point (0, y). What is y worth, if both lines are perpendicular?
Answer:
y = 5
Step-by-step explanation:
Line 1 that passes through A (2,1) and B (6,3)
Slope (m1) = 3-1/6-2 = 2/4 = 1/2
y - 1 =
( x -2)
2y - 2 = x- 2
y = 
Line 2 passes through A (2,1) and (0,y)
slope (m2) =
Line 1 and Line 2 are perpendicular
m1*m2 = -1
*
= -1
y-1 = 4
y = 5
slope = -2
Equation of Line 2
Y-1 = -2(x-2)
y -1 = -2x +4
2x +y = 5
Let's assume two variables x and y which represent the local and international calls respectively.
x + y = 852 = total number of minutes which were consumed by the company (equation 1)
0.06*x+ 0.15 y =69.84 = total price which was charged for the phone calls (Equation 2)
from equation 1:-
x=852 -y (sub in equation 2)
0.06 (852 - y) + 0.15 y =69.84
51.12 -0.06 y +0.15 y =69.84 (subtracting both sides by 51.12)
0.09 y =18.74
y= 208 minutes = international minutes (sub in 1)
208+x=852 (By subtracting both sides by 208)
x = 852-208 = 644 minutes = local minutes