Given:
The given digits are 1,2,3,4,5, and 6.
To find:
The number of 5-digit even numbers that can be formed by using the given digits (if repetition is allowed).
Solution:
To form an even number, we need multiples of 2 at ones place.
In the given digits 2,4,6 are even number. So, the possible ways for the ones place is 3.
We have six given digits and repetition is allowed. So, the number of possible ways for each of the remaining four places is 6.
Total number of ways to form a 5 digit even number is:


Therefore, total 3888 five-digit even numbers can be formed by using the given digits if repetition is allowed.
Answer:

thats it all of them are 69
6a. 1 - 2sin(x)² - 2cos(x)² = 1 - 2(sin(x)² +cos(x)²) = 1 - 2·1 = -1
6c. tan(x) + sin(x)/cos(x) = tan(x) + tan(x) = 2tan(x)
6e. 3sin(x) + tan(x)cos(x) = 3sin(x) + (sin(x)/cos(x))cos(x) = 3sin(x) +sin(x) = 4sin(x)
6g. 1 - cos(x)²tan(x)² = 1 - cos(x)²·(sin(x)²)/cos(x)²) = 1 -sin(x)² = cos(x)²
Answer:
Let x be the number of silver medals.
As there were two more gold medals than silver ones, gold medals are x+2
We also know that the number of bronze medals was 4 less than the sum of gold and silver, so if there are x + 2 of gold and x of silver, there are x+x+2-4 of bronze.
Now, we can do an equation, as we know there were a total of 28 medals:
x + x + 2 + x + x + 2 - 4 = 28
And we isolate x:
4x = 28
x = 28/4 = 7
There were 7 silver medals, so there were 9 gold ones (7-2) and 12 of bronze (9+7-4).