1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
11

Help I’m timed!!! which expression can be used to convert 80 US dollars (USD) to Australian dollars (AUD)?

Mathematics
2 answers:
Brut [27]3 years ago
8 0
The Answer is the first one or a
Sunny_sXe [5.5K]3 years ago
7 0

Answer:

A

Step-by-step explanation:

You might be interested in
20 of 60%= <br> Help for ten points
jarptica [38.1K]
I believe that the correct answer is 12
5 0
3 years ago
Read 2 more answers
J.J.
soldier1979 [14.2K]

Answer:35%

Step-by-step explanation:not really sure if I'm right the way I did was I subtract $154.30 subtracted by $119.77 and my answer was $34.53 that I just added my decimal point and rounded to the nearest whole number

8 0
4 years ago
Dawn is making an abstract painting with two triangles. The dimensions of the painting are shown below:
ehidna [41]
I don't know about square inches, I can't convert 128 inches to square inches is there anyway Google or something can help you?
8 0
3 years ago
Read 2 more answers
Ab+c=d whats it the answer
gtnhenbr [62]

Answer:

a=(d-c)/b

Step-by-step explanation:

Subtract c from both sides:

ab+c−c=d−c

∴ab=d−c

Divide both sides by b

ab/b=d−c/b

so the answer is...     a=(d-c)/b

8 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
Other questions:
  • 240-15m=200-5m <br> HELP ME
    12·2 answers
  • How do you find the intercepts when it is not in standard form
    15·2 answers
  • -1/2-(-5/9)=<br><br> In simplest form
    8·1 answer
  • What is the solution of the equation 6x-3=-51
    15·1 answer
  • How many weeks of data must be randomly sampled to estimate the mean weekly sales of a new line of athletic footwear? We want 98
    12·1 answer
  • I dont understand what to do?
    10·1 answer
  • 1/4 + (-3/4)= ?? help pleasee
    8·2 answers
  • Elijah earns $200 for 8 hours of work.What is the rate (in dollars per item)
    8·1 answer
  • 7 2 − 140 degrees for angles
    14·1 answer
  • Solve the system of equations by substitution<br> 5x +y = 36<br> y = 4x
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!