Answer:
b. Thermal energy will flow from your hand to the snowball.
Explanation:
Answer:
(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m
(b) thermal energy was generated by friction is 1.88 x
J
(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N
Explanation:
given information:
m = 750 kg
initial velocity,
= 110 km/h = 110 x 1000/3600 = 30.6 m/s
initial height,
= 22 m
slope, θ = 2.5°
(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?
according to conservation-energy
EP = EK
mgh = 
gh = 
h = 
= 47.6 m
(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?
thermal energy = mgΔh
= mg (h -
)
= 750 x 9.8 x (47.6 - 22)
= 188160 Joule
= 1.88 x
J
(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?
f d = mgΔh
f = mgΔh / d,
where h = d sin θ, d = h/sinθ
therefore
f = (mgΔh) / (h/sinθ)
= 1.88 x
/(22/sin 2.5°)
= 373 N
A) A concave mirror forming a larger, virtual image
Explanation:
The figure is missing; see attachment.
There are two types of mirror:
- Concave (converging) mirrors: a concave mirror is a mirror that reflects the light inward
- Convex (diverging) mirrors: a convex mirror is a mirror that reflects the light outward
The image formed by a mirror can also be of two types:
- Real image: it is formed on the same side of the object, with respect to the mirror
- Virtual image: it is formed on the opposite side of the object, with respect to the mirror
In the figure of this problem (see attachment), we see that:
- The mirror reflects the light from the object inward --> so it is a concave mirror
- The image is formed on the other side of the mirror --> it is a virtual image
So the correct option is
A) A concave mirror forming a larger, virtual image
Learn more about mirrors:
brainly.com/question/8737441
#LearnwithBrainly
Answer:
2.605m
Explanation:
Using the formula for calculating Range (distance travelled in horizontal direction)
Range R = U√2H/g
U is the speed = 4.8m/s
H is the maximum height = ?
g is the acc due to gravity = 9.8m/s²
R = 3.5m
Substitute into the formula and get H
3.5 = 4.8√2H/9.8
3.5/4.8 = √2H/9.8
0.7292 = √2H/9.8
square both sides
0.7292² = 2H/9.8
2H = 0.7292² * 9.8
2H = 5.21
H = 5.21/2
H = 2.605m
Hence the height of the ball from the ground is 2.605m
Refrigerator was what is commonly used today. We do dry foods and salt cure but that is not done on a daily basis