Answer:
1.2 rad/s
Explanation:
m1 = 15 g, m2 = 9 g, ω1 = 0.75 rad/s
Let the new angular speed is ω2 and the radius of the table be r.
The angular momentum is conserved when no external torque is applied.
I1 ω1 = I2 ω2
(m1 + m2)x r^2 x 0.75 = m1 x r^2 x ω2
(15 + 9) x 0.75 = 15 x ω2
ω2 = 1.2 rad/s
Explanation:
sinces : Momentum = velocity × mass
then : 30 = 10 × m and m = 30 ÷ 10 = 3 kg
Answer:
0.182 m/s
Explanation:
m1 = 30,000 kg, m2 = 110,000 kg, u1 = 0.85 m/s
let the velocity of loaded freight car is v
Use the conservation of momentum
m1 x u1 + m2 x 0 = (m1 + m2) x v
30,000 x 0.85 = (30,000 + 110,000) x v
v = 0.182 m/s
The answer is E. Our Universe
Answer:
The focal length of the concave mirror is -15.5 cm
Explanation:
Given that,
Height of the object, h = 20 cm
Radius of curvature of the mirror, R = -31 cm (direction is opposite)
Object distance, u = -94 cm
We need to find the focal length of the mirror. The relation between the focal length and the radius of curvature of the mirror is as follows :
R = 2f
f is the focal length


f = -15.5 cm
So, the focal length of the concave mirror is -15.5 cm. Hence, this is the required solution.