3. The sum of the players' momenta is equal to the momentum of the players when they're stuck together:
(75 kg) (6 m/s) + (80 kg) (-4 m/s) = (75 kg + 80 kg) v
where v is the velocity of the combined players. Solve for v :
450 kg•m/s - 320 kg•m/s = (155 kg) v
v = (130 kg•m/s) / (155 kg)
v ≈ 0.84 m/s
4. The total momentum of the bowling balls prior to collision is conserved and is the same after their collision, so that
(6 kg) (5.1 m/s) + (4 kg) (-1.3 m/s) = (6 kg) (1.5 m/s) + (4 kg) v
where v is the new velocity of the 4-kg ball. Solve for v :
30.6 kg•m/s - 5.2 kg•m/s = 9 kg•m/s + (4 kg) v
v = (16.4 kg•m/s) / (4 kg)
v = 4.1 m/s
Mass = Volume/Density. The answer is 9.8kg
Answer:
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Explanation:
Given:
Length of tube = 5 m (500 cm)
Mass of tube = 9
Suspended vertically from 150 cm and 50 cm.
Computation:
Force = Mass × gravity acceleration.
Force = 9.8 x 9
Force = 88.2 N
So,
Upward forces = Downward forces
D1 = 150 - 50 = 100 cm
D2 = 150 + 50 = 200 cm
And F1 = F2
F1 x D1 = F2 x D2
F1 x 100 = F2 x 200
F = 2F
Total force = Upward forces + Downward forces
3F = 88.2
F = 29.4 and 2F = 58.8 N
force (tension) of 29.4 N (upward) in 100 cm
force (tension) of 58.4 N (upward) in 200 cm
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s