Answer:
The probability that a student is proficient in mathematics, but not in reading is, 0.10.
The probability that a student is proficient in reading, but not in mathematics is, 0.17
Step-by-step explanation:
Let's define the events:
L: The student is proficient in reading
M: The student is proficient in math
The probabilities are given by:


The probability that a student is proficient in mathematics, but not in reading is, 0.10.
The probability that a student is proficient in reading, but not in mathematics is, 0.17
Point slope form = y-1=-3/5(x-2)
Y= -x+4
2x+2(-x+4)=8
2x-2x+8=8
8=8
x+y= 4
2x+2y= 8
-2x-2y= -8
2x+2y= 8
0=0
the answer is b inconsistent
1890.56 / 4 = 472.64 / pi = 150.4459846
square root of 150.4459846 = 12.26564245 = radius
12.26564245 x 2= 24.53128489
the answer is number 2
AWNSER: 8 and 40
At least subtract those by 3 and then get the actual number