1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Assoli18 [71]
3 years ago
13

Sofia’s mother sent her to the grocery store with $10. If the sales tax rate that will apply at the time of her purchase is 6%,

will Sofia have enough money to purchase the items on her list? 1 gallon of milk, $3.66 1 pound of bananas, $0.72 1 head of lettuce, $1.77 1 pound of tomatoes, $2.17 A. No, the total of her purchase after sales tax is $13.81. B. No, the total of her purchase after sales tax is $13.31. C. Yes, the total of her purchase after sales tax is $8.82. D. Yes, the total of her purchase after sales tax is $8.32.
Mathematics
1 answer:
german3 years ago
3 0

Answer:

c

Step-by-step explanation:

3.66+.72+1.77+2.17=8.32×6%=8.8192 =8.82

You might be interested in
Please help me, question is the picture
Hitman42 [59]
The answer is 425 miles.

Both of the companies can be represented by an equation. The first company being f(a) and the second company bring f(b).
f(a)=$0.06x+65
f(b)=$0.10x+48
We want to find where they are equal, so we can set the equations equal to each other.
$0.06x+65=$0.10x+48
From here we can simplify the equation.
17=$0.04x
425=x
8 0
3 years ago
Read 2 more answers
Idendify the slope and y-intercept from the equation below.
balandron [24]
M = 10
y = 10x-5. Hope it helppppppppppppppp
4 0
3 years ago
Read 2 more answers
Find the derivative of sinx/1+cosx, using quotient rule​
Mrrafil [7]

Answer:

f'(x) = -1/(1 - Cos(x))

Step-by-step explanation:

The quotient rule for derivation is:

For f(x) = h(x)/k(x)

f'(x) = \frac{h'(x)*k(x) - k'(x)*h(x)}{k^2(x)}

In this case, the function is:

f(x) = Sin(x)/(1 + Cos(x))

Then we have:

h(x) = Sin(x)

h'(x) = Cos(x)

And for the denominator:

k(x) = 1 - Cos(x)

k'(x) = -( -Sin(x)) = Sin(x)

Replacing these in the rule, we get:

f'(x) = \frac{Cos(x)*(1 - Cos(x)) - Sin(x)*Sin(x)}{(1 - Cos(x))^2}

Now we can simplify that:

f'(x) = \frac{Cos(x)*(1 - Cos(x)) - Sin(x)*Sin(x)}{(1 - Cos(x))^2} = \frac{Cos(x) - Cos^2(x) - Sin^2(x)}{(1 - Cos(x))^2}

And we know that:

cos^2(x) + sin^2(x) = 1

then:

f'(x) = \frac{Cos(x)- 1}{(1 - Cos(x))^2} = - \frac{(1 - Cos(x))}{(1 - Cos(x))^2} = \frac{-1}{1 - Cos(x)}

4 0
3 years ago
If a basketball was dropped 32 feet from a second floor of a home, how far would it rebound if it bounciness was
valentina_108 [34]

Answer:

23.68

Step-by-step explanation:

74% = 74/100

\frac{74}{100} · \frac{32}{1} = 23.68

4 0
3 years ago
Read 2 more answers
Solve the systems by the addition method 2x + y = - 1x - 2y = - 4
inna [77]

Answer:

x = -6/5

y =7/5

Step-by-step explanation:

2x + y = - 1

x - 2y = - 4

Multiply the first equation by 2 so we can eliminate y

2(2x + y = - 1)

4x + 2y = -2

Add this to the second equation

4x + 2y = -2

x - 2y = - 4

---------------------

5x + 0y = -6

Divide by 5

5x/5 = -6/5

x = -6/5

Multiply the second equation by -2 so we can eliminate x

-2(x - 2y = - 4)

-2x+4y = 8

Add this to the first equation

2x + y = - 1

-2x+4y = 8

---------------------

0x + 5y = 7

Divide by 5

5y/5 = 7/5

y =7/5

6 0
3 years ago
Other questions:
  • Simplify 7-[x - (-2x + 9)].<br><br> –x - 2<br> -3x + 16<br> 3x - 2
    14·1 answer
  • Which number is the best approximate of square root of 500 to the nearest tenth
    5·1 answer
  • 3. Suppose e and f are real numbers where e&gt;0 and f&lt;0.
    13·1 answer
  • Please help me out with this
    9·1 answer
  • How would u solve for “r” in D=r(t)
    13·1 answer
  • What is the absolute value of -645
    12·2 answers
  • Where do I start with this? it is a calc question. I thought perhaps relating the height to the length to get everything in term
    15·1 answer
  • Please help me I will give you the brain thing and extra points. 1/5
    7·2 answers
  • 8/9 to what power equals 64/81
    11·2 answers
  • Someone plz help me with this
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!