Divide each term by U and simplify. X=y/U and W=2/U. Next, solve the equation for y. Simplify the left side then cancel the common factor of U. 1/1*y/1=y
W=2/U. Multiply 1/1*y/1=y/1 so, y/1=y and W=2/U. Next, divide y/y to get 1 now y=y, still W=2/U. Now, move all terms containing y to the left side. Since, Y contains the variable to solve for, move it to the left side of the equation by subtracting y from both sides. Now, y-y=0 still W=2/U. Next, subtract y from y to get zero and still W=2/U. Subtract y from y to get zero or 0=0 and W=2/U is your expression since 0=0.
Next: UW=m and WX=y+14 write expression for UX
First, divide each term by W and simplify. U=m/W, WX=y+14. Next, solve the equation for Y. Move y from the right side of the equation to the left side. Still, U=m/W and y=-14+WX. We must reorder -14 and WX. U=m/w and y=WX-14.
Replace the variable U with m/W in the expression to (m/W)X. Next, simplify (m/W)X. Now, write X and a fraction with denominator 1. Looks like this
fractions are side by side m/W X/1 . Multiply, m/W and X/1 to get mX/W.
mX/W is your final expression for UW=m and WX=y+14 expression for UX.
Answer:
1/63
Step-by-step explanation:
There are a couple of ways to do this.
<h3>1) </h3>
Look for the GCF of the numerators when a common denominator is used.
GCF(3/7, 4/9) = GCF(27/63, 28/63) = (1/63)·GCF(27, 28)
GCF(3/7, 4/9) = 1/63
__
<h3>2) </h3>
Use Euclid's algorithm. If the remainder from division of the larger by the smaller is zero, then the smaller is the GCF; otherwise, the remainder replaces the larger, and the algorithm repeats.
(4/9)/(3/7) = 1 remainder 1/63*
(3/7)/(1/63) = 27 remainder 0
The GCF is 1/63.
__
* The quotient is 28/27 = 1 +1/27 = 1 +(1/27)(3/7)/(3/7) = 1 +(1/63)/(3/7) or 1 with a remainder of 1/63.
_____
<em>Additional comment</em>
3/7 = (1/63) × 27
4/9 = (1/63) × 28
I think you can do that on photo math
Answer:
D
Step-by-step explanation: