1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
11

Let z=3+i, then find a. Z²b. |Z| c.

rt{Z}" alt="\sqrt{Z}" align="absmiddle" class="latex-formula">
d.  Polar form of z​
Mathematics
2 answers:
zysi [14]3 years ago
3 0

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

Nataly_w [17]3 years ago
3 0

Answer:

\displaystyle \text{a. }8+6i\\\\\text{b. }\sqrt{10}\\\\\text{c. }\\\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}+i\sqrt{\frac{\sqrt{10}-3}{2}},\\-\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}-i\sqrt{\frac{\sqrt{10}-3}{2}}\\\\\\\text{d. }\\\text{Exact: }z=\sqrt{10}\left(\cos\left(\arctan\left(\frac{1}{3}\right)\right), i\sin\left(\arctan\left(\frac{1}{3}\right)\right)\right),\\\text{Approximated: }z=3.16(\cos(18.4^{\circ}),i\sin(18.4^{\circ}))

Step-by-step explanation:

Recall that i=\sqrt{-1}

<u>Part A:</u>

We are just squaring a binomial, so the FOIL method works great. Also, recall that (a+b)^2=a^2+2ab+b^2.

z^2=(3+i)^2,\\z^2=3^2+2(3i)+i^2,\\z^2=9+6i-1,\\z^2=\boxed{8+6i}

<u>Part B:</u>

The magnitude, or modulus, of some complex number a+bi is given by \sqrt{a^2+b^2}.

In 3+i, assign values:

  • a=3
  • b=1

|z|=\sqrt{3^2+1^2},\\|z|=\sqrt{9+1},\\|z|=\sqrt{10}

<u>Part C:</u>

In Part A, notice that when we square a complex number in the form a+bi, our answer is still a complex number in the form

We have:

(c+di)^2=a+bi

Expanding, we get:

c^2+2cdi+(di)^2=a+bi,\\c^2+2cdi+d^2(-1)=a+bi,\\c^2-d^2+2cdi=a+bi

This is still in the exact same form as a+bi where:

  • c^2-d^2 corresponds with a
  • 2cd corresponds with b

Thus, we have the following system of equations:

\begin{cases}c^2-d^2=3,\\2cd=1\end{cases}

Divide the second equation by 2d to isolate c:

2cd=1,\\\frac{2cd}{2d}=\frac{1}{2d},\\c=\frac{1}{2d}

Substitute this into the first equation:

\left(\frac{1}{2d}\right)^2-d^2=3,\\\frac{1}{4d^2}-d^2=3,\\1-4d^4=12d^2,\\-4d^4-12d^2+1=0

This is a quadratic disguise, let u=d^2 and solve like a normal quadratic.

Solving yields:

d=\pm i \sqrt{\frac{3+\sqrt{10}}{2}},\\d=\pm \sqrt{\frac{{\sqrt{10}-3}}{2}}

We stipulate d\in \mathbb{R} and therefore d=\pm i \sqrt{\frac{3+\sqrt{10}}{2}} is extraneous.

Thus, we have the following cases:

\begin{cases}c^2-\left(\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3\\c^2-\left(-\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3\end{cases}\\

Notice that \left(\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=\left(-\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2. However, since 2cd=1, two solutions will be extraneous and we will have only two roots.

Solving, we have:

\begin{cases}c^2-\left(\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3 \\c^2-\left(-\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3\end{cases}\\\\c^2-\sqrt{\frac{5}{2}}+\frac{3}{2}=3,\\c=\pm \sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}

Given the conditions c\in \mathbb{R}, d\in \mathbb{R}, 2cd=1, the solutions to this system of equations are:

\left(\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}, \sqrt{\frac{\sqrt{10}-3}{2}}\right),\\\left(-\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}},- \frac{\sqrt{10}-3}{2}}\right)

Therefore, the square roots of z=3+i are:

\sqrt{z}=\boxed{\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}+i\sqrt{\frac{\sqrt{10}-3}{2}} },\\\sqrt{z}=\boxed{-\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}-i\sqrt{\frac{\sqrt{10}-3}{2}}}

<u>Part D:</u>

The polar form of some complex number a+bi is given by z=r(\cos \theta+\sin \theta)i, where r is the modulus of the complex number (as we found in Part B), and \theta=\arctan(\frac{b}{a}) (derive from right triangle in a complex plane).

We already found the value of the modulus/magnitude in Part B to be r=\sqrt{10}.

The angular polar coordinate \theta is given by \theta=\arctan(\frac{b}{a}) and thus is:

\theta=\arctan(\frac{1}{3}),\\\theta=18.43494882\approx 18.4^{\circ}

Therefore, the polar form of z is:

\displaystyle \text{Exact: }z=\sqrt{10}\left(\cos\left(\arctan\left(\frac{1}{3}\right)\right), i\sin\left(\arctan\left(\frac{1}{3}\right)\right)\right),\\\text{Approximated: }z=3.16(\cos(18.4^{\circ}),i\sin(18.4^{\circ}))

You might be interested in
Compute 860 times 500
mr_godi [17]

Answer:430,000

Step-by-step explanation:

Type it into your calculator and you get that number

8 0
3 years ago
If the diameter of the circle is 24 cm, find its area correct to 1 decimal place.
Blababa [14]

Answer:

452.4 cm^2

Step-by-step explanation:

Use the area formula A = πr².  With d = 24 cm, r = 12 cm, and so the desired area is

A = π(144 cm^2) = 452.4 cm^2

6 0
3 years ago
Simplify. y 5 · y 3 ÷ y 2
Gnesinka [82]
Y^5 x y^3 /y^2
y^8/y^2
y^4
3 0
3 years ago
True or False: If lim x → a f(x) does not exist, then f is undefined at the point x = a.
kkurt [141]

Answer:

this is absolutely false.

8 0
3 years ago
Is this correct? <br><br> #2 <br><br> Please check
julsineya [31]
Yes you are correct!

you first have to get rid of the number next to the variable m. so you have to subtract 9 to get rid of the variable. then you subtract 9 from both sides and get that answer.
4 0
3 years ago
Other questions:
  • Write the number in two other forms 7.32
    15·1 answer
  • What are the x-intercepts of the quadratic function?
    11·1 answer
  • Write the equation of a line that is perpendicular to y = 5 y=5y, equals, 5 and that passes through the point ( − 7 , − 5 ) (−7,
    9·2 answers
  • Which decimal represents the fraction of cats in this group that are black?
    9·1 answer
  • Help me solve,Brainlist for first to answer
    11·1 answer
  • Simplify completely quantity x squared minus 4 x plus 4 over quantity x squared plus 10 x plus 25 times quantity x plus 5 over q
    13·2 answers
  • In an upcoming election, the student body will elect a president, vice president, secretary and treasurer.
    8·1 answer
  • Two sides of a triangle have lengths 5 and 12. What must be true about the length of the third side?
    9·2 answers
  • Hii Please Answer ASAP and only if you know the answer! :P I will give brainliest to right answer!! :)
    13·1 answer
  • Find the equation for the line that passes through the point (4,2) that is parallel to the line with the equation
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!