1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
11

Let z=3+i, then find a. Z²b. |Z| c.

rt{Z}" alt="\sqrt{Z}" align="absmiddle" class="latex-formula">
d.  Polar form of z​
Mathematics
2 answers:
zysi [14]3 years ago
3 0

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

Nataly_w [17]3 years ago
3 0

Answer:

\displaystyle \text{a. }8+6i\\\\\text{b. }\sqrt{10}\\\\\text{c. }\\\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}+i\sqrt{\frac{\sqrt{10}-3}{2}},\\-\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}-i\sqrt{\frac{\sqrt{10}-3}{2}}\\\\\\\text{d. }\\\text{Exact: }z=\sqrt{10}\left(\cos\left(\arctan\left(\frac{1}{3}\right)\right), i\sin\left(\arctan\left(\frac{1}{3}\right)\right)\right),\\\text{Approximated: }z=3.16(\cos(18.4^{\circ}),i\sin(18.4^{\circ}))

Step-by-step explanation:

Recall that i=\sqrt{-1}

<u>Part A:</u>

We are just squaring a binomial, so the FOIL method works great. Also, recall that (a+b)^2=a^2+2ab+b^2.

z^2=(3+i)^2,\\z^2=3^2+2(3i)+i^2,\\z^2=9+6i-1,\\z^2=\boxed{8+6i}

<u>Part B:</u>

The magnitude, or modulus, of some complex number a+bi is given by \sqrt{a^2+b^2}.

In 3+i, assign values:

  • a=3
  • b=1

|z|=\sqrt{3^2+1^2},\\|z|=\sqrt{9+1},\\|z|=\sqrt{10}

<u>Part C:</u>

In Part A, notice that when we square a complex number in the form a+bi, our answer is still a complex number in the form

We have:

(c+di)^2=a+bi

Expanding, we get:

c^2+2cdi+(di)^2=a+bi,\\c^2+2cdi+d^2(-1)=a+bi,\\c^2-d^2+2cdi=a+bi

This is still in the exact same form as a+bi where:

  • c^2-d^2 corresponds with a
  • 2cd corresponds with b

Thus, we have the following system of equations:

\begin{cases}c^2-d^2=3,\\2cd=1\end{cases}

Divide the second equation by 2d to isolate c:

2cd=1,\\\frac{2cd}{2d}=\frac{1}{2d},\\c=\frac{1}{2d}

Substitute this into the first equation:

\left(\frac{1}{2d}\right)^2-d^2=3,\\\frac{1}{4d^2}-d^2=3,\\1-4d^4=12d^2,\\-4d^4-12d^2+1=0

This is a quadratic disguise, let u=d^2 and solve like a normal quadratic.

Solving yields:

d=\pm i \sqrt{\frac{3+\sqrt{10}}{2}},\\d=\pm \sqrt{\frac{{\sqrt{10}-3}}{2}}

We stipulate d\in \mathbb{R} and therefore d=\pm i \sqrt{\frac{3+\sqrt{10}}{2}} is extraneous.

Thus, we have the following cases:

\begin{cases}c^2-\left(\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3\\c^2-\left(-\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3\end{cases}\\

Notice that \left(\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=\left(-\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2. However, since 2cd=1, two solutions will be extraneous and we will have only two roots.

Solving, we have:

\begin{cases}c^2-\left(\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3 \\c^2-\left(-\sqrt{\frac{\sqrt{10}-3}{2}}\right)^2=3\end{cases}\\\\c^2-\sqrt{\frac{5}{2}}+\frac{3}{2}=3,\\c=\pm \sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}

Given the conditions c\in \mathbb{R}, d\in \mathbb{R}, 2cd=1, the solutions to this system of equations are:

\left(\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}, \sqrt{\frac{\sqrt{10}-3}{2}}\right),\\\left(-\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}},- \frac{\sqrt{10}-3}{2}}\right)

Therefore, the square roots of z=3+i are:

\sqrt{z}=\boxed{\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}+i\sqrt{\frac{\sqrt{10}-3}{2}} },\\\sqrt{z}=\boxed{-\sqrt{\sqrt{\frac{5}{2}}+\frac{3}{2}}-i\sqrt{\frac{\sqrt{10}-3}{2}}}

<u>Part D:</u>

The polar form of some complex number a+bi is given by z=r(\cos \theta+\sin \theta)i, where r is the modulus of the complex number (as we found in Part B), and \theta=\arctan(\frac{b}{a}) (derive from right triangle in a complex plane).

We already found the value of the modulus/magnitude in Part B to be r=\sqrt{10}.

The angular polar coordinate \theta is given by \theta=\arctan(\frac{b}{a}) and thus is:

\theta=\arctan(\frac{1}{3}),\\\theta=18.43494882\approx 18.4^{\circ}

Therefore, the polar form of z is:

\displaystyle \text{Exact: }z=\sqrt{10}\left(\cos\left(\arctan\left(\frac{1}{3}\right)\right), i\sin\left(\arctan\left(\frac{1}{3}\right)\right)\right),\\\text{Approximated: }z=3.16(\cos(18.4^{\circ}),i\sin(18.4^{\circ}))

You might be interested in
Which of the following describes how to translate the graph y = |x| to obtain the graph of y = |x + 7|? 7 units up 7 units down
sergij07 [2.7K]

ANSWER

7 units left.

EXPLANATION

The parent function is

y =  |x|

The transformation

y =  |x + a|

shifts the graph of the function, a units to the left.

Therefore the transformation that describes how to translate the graph of

y=|x| to obtain y=|x+7| is 7 units left.

The third choice is correct

5 0
3 years ago
Read 2 more answers
What is the probability of randomly drawing an odd number between 24 and 33?
Studentka2010 [4]
Write out the numbers between 24 and 33:  {24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

How many numbers have we here?  10.

How many of these numbers are odd?  {25, 27, 29, 31, 33}

Strictly speaking, "between 24 and 33" does not include {24, 33}.

Thus, the odd numbers between 24 and 33 are {25, 27, 29, 31}

The chances of drawing an odd number between 24 and 33 are then 4 / 10.

If, however, we omit the endpoints 24 and 33, then there are 8 numbers between 24 and 33:  {25, 27, 29, 31}

and the odds of choosing an odd number from these eight numbers is 4/8, or 1/2, or 0.50.
6 0
3 years ago
a six-foot-tall tent standing next to a cardboard box cast a nine foot Shadow if the cardboard box cast a shadow that is 6 foot
AVprozaik [17]
I think it's 3 foot long but I'm not sure...
3 0
3 years ago
A local baseball team played 35 games this season. If they won 4/5 of their games, how many games did they win? *
Lelechka [254]
Multiply 3/5*35. Numerator * numerator, denominator*denominator. Simplify before multiply.
And. 28
8 0
3 years ago
Find the value of x. Round to the nearest tenth.
nordsb [41]

Step-by-step explanation:

here,,

a=3,b=10,C=120°

c^2=a^2+b^2-2ab cos120°

=(3)^2 +(10)^2 _2 (3)(10)(-1/2) [cos120°=-1/2]

=9+100-(-30)

=109+30

=139

c=(139 )1/2=11.79

c=12

3 0
3 years ago
Other questions:
  • What transformations produce the graph of g(x)=- | 3x | from the graph of the parent function f(x)=|x| Select all that apply
    6·2 answers
  • Idk what the right answer is
    8·1 answer
  • NEED HELP FAST WILL GIVE BRAINIEST
    7·2 answers
  • You are sailing from your lakeshore cabin to a marina 60º north of east and 0.5 miles across the lake. On your return trip, you
    12·1 answer
  • Which of the following statements is true if m ZE= m 2 Y and m2F = m2X?
    6·1 answer
  • Mr. Jenkins won $500 in a raffle. He split
    9·2 answers
  • What is the relationship between fractions and decimals
    7·1 answer
  • Consider the inequity
    5·2 answers
  • Can y’all please help me!
    12·2 answers
  • Can someone please answer number 35
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!