Answer:
38
Explanation:
In eukaryotic cells, the maximum production of ATP molecules generated per glucose molecule during cellular respiration is 38, i.e., 2 ATP molecules from glycolysis, 2 ATP molecules from the Krebs cycle, and 34 ATP molecules from the Electron Transport Chain (ETC). <em>In vivo</em> (i.e., in the cell), this number is not reached because there is an energy cost associated with the movement of pyruvate (CH3COCOO−) and adenosine diphosphate (ADP) into the mitochondrial matrix, thereby the predicted yield is approximately 30 ATP molecules per glucose molecule. In aerobic bacteria, aerobic respiration of glucose occurs in the cytoplasm (since bacteria do not contain membrane-bound organelles such as mitochondria), and thereby, in this case, it is expected that aerobic respiration using glucose yields 38 ATP per glucose molecule.
In the coding region, natural selection tends to eliminate all of the mutations because of the high importance these regions have. The coding region contains genes that synthesize proteins and the changes in the DNA sequence can have devastating effects on the cell. Therefore, there are very few differences in the sequences of coding regions that can help us trace the lineage.
On the other hand, in the non-coding regions, the mutations often accumulate because they have little effect on the cell and the adaptive value of the organism. This enables us to trace up the lineage by comparing the sequences and seeing the differences in the sequences.
Answer:
We learned in biology class that every cell in the body has the same DNA. Whether a heart cell, skin cell or muscle cell—they all read from the same genetic blueprint. Now, scientists are learning there is more to the story.
Hey there,
To be exact, <span>1,048,576 Kilobytes
Hope this helps :))</span><span>
</span>
~Top
It means wolf are begining to disseaper. They are going to be extinct.