Answer:
Vx = 3.10 [m/s]
Vy = 11.59 [m/s]
Explanation:
To solve this problem we must decompose the velocity vector by means of the angle on the horizontal.
v = 12 [m/s]
Vx = 12*cos (75) = 3.10 [m/s]
Vy = 12*sin (75) = 11.59 [m/s]
I would say Orlando since its near more ocean than Washington. Since Ocean can change weather by making it cold or warm depending on the season.
Answer:
v = ((m + M) / m)*√(2*g*h)
Explanation:
Given
m = mass of the projectile
M = mass of the ballistic pendulum
v = initial speed of the projectile
v' = speedof the system (pendulum + projectile) after the inelastic collision
h = maximum height reached for the system
Knowing that is an inelastic collision we have
m*v + M*(0) = (m+M)*v'
⇒ v' = m*v / (m+M)
After the collision, we apply the Principle of the Conservation of Energy
Ki + Ui = Kf + Uf
where
Ui = Kf = 0 J
then
Ki = Uf
0.5*(m+M)*v'² = (m+M)*g*h
⇒ 0.5*v'² = g*h
⇒ v'² = 2*g*h
⇒ (m*v / (m+M))² = 2*g*h
⇒ v = ((m+M) / m)*√(2*g*h)
Answer:
initial velocity=12.31 m/s
Final speed= 16.234 m/s
Explanation:
Given Data
height=5.72 m
distance=13.30 m
To Find
Initial Speed=?
Solution
Use the following equation to determine the time of the stone is falling.
d = vi ×t ½ ×9.8 × t²
Where
d = 5.72m and vi = 0 m/s
so
5.72 = ½× 9.8 ×t²
t = √(5.72 ÷ 4.9)
t=1.08 seconds
To determine the initial horizontal velocity use the following equation.
d = v×t
13.30 = v ×1.08
v = 13.30 ÷ 1.08
v=12.31 m/s
To determine stone’s final vertical velocity use the following equation
vf = vi+9.8×t............vi=0 m/s
vf = 9.8×1.08
vf= 10.584 m/s
To determine stone’s final speed use the following equation
Final speed = √[Horizontal velocity²+Final vertical velocity²]
Final speed = √{(12.31 m/s)²+(10.584 m/s)²}
Final speed= 16.234 m/s