Answer:
I think the water collected after is 25 to 35 and before is 45 to 64?
Step-by-step explanation:
Please don't criticize me, I haven't done this is in a while. :(
Answer:
c
Step-by-step explanation:
(–2)2 + (–4)2 + (18 – 23) = -4-8-5= -17
Usando proporciones, hay que el error maximo que se puede cometer al medir el diametro de un circulo, en cm, es de
.
<h3>¿Qué es una proporción?</h3>
Una proporción es una fracción de la cantidad total.
En este problema:
- La cantidad total es el diametro de un circulo, cuya medida es 10 cm.
- El erro maximo es de 5% de esto, o sea:

El error maximo que se puede cometer al medir el diametro de un circulo, en cm, es de
.
Puede-se aprender más a cerca de proporciones en brainly.com/question/26395519
The length of ladder used is 12.25 ft.
<h3>What is Pythagoras theorem?</h3>
Pythagorean theorem, the well-known geometric theorem that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse .
The Pythagoras theorem which is also referred to as the Pythagorean theorem explains the relationship between the three sides of a right-angled triangle. According to the Pythagoras theorem, the square of the hypotenuse is equal to the sum of the squares of the other two sides of a triangle.
example:
The hypotenuse of a right-angled triangle is 16 units and one of the sides of the triangle is 8 units. Find the measure of the third side using the Pythagoras theorem formula.
Solution:
Given : Hypotenuse = 16 units
Let us consider the given side of a triangle as the perpendicular height = 8 units
On substituting the given dimensions to the Pythagoras theorem formula
Hypotenuse^2 = Base^2 + Height^2
16^2 = B^2 + 8^2
B^2 = 256 - 64
B = √192 = 13.856 units
Therefore, the measure of the third side of a triangle is 13.856 units.
given:
base= 2.5 ft,
perpendicular= 12 ft
Using Pythagoras theorem,
H² = B² + P²
H² = 2.5² + 12²
H² = 6.25+ 144
H= 12.25 ft
Learn more about Pythagoras theorem here: brainly.com/question/343682
#SPJ2
<em>Answer</em>
<em>I </em><em>guess</em>
<em>3</em><em>9</em><em> </em><em>different</em><em> </em><em>choice</em><em> </em><em>are </em><em>available</em>