<h3>Answer is -9</h3>
=================================
Work Shown:
(g°h)(x) is the same as g(h(x))
So, (g°h)(0) = g(h(0))
Effectively h(x) is the input to g(x). Let's first find h(0)
h(x) = x^2+3
h(0) = 0^2+3
h(0) = 3
So g(h(x)) becomes g(h(0)) after we replace x with 0, then it updates to g(3) when we replace h(0) with 3.
Now let's find g(3)
g(x) = -3x
g(3) = -3*3
g(3) = -9
-------
alternatively, you can plug h(x) algebraically into the g(x) function
g(x) = -3x
g( h(x) ) = -3*( h(x) ) ... replace all x terms with h(x)
g( h(x) ) = -3*(x^2 + 3) ... replace h(x) on right side with x^2+3
g( h(x) ) = -3x^2 - 9
Next we can plug in x = 0
g( h(0) ) = -3(0)^2 - 9
g( h(0) ) = -9
we get the same result.
Answer: 0.51
Step-by-step explanation:
This is a conditional probability. The first event is the airplane accident being caused by structural failure. The probability of it being due to structural failure is 0.3 and the probability of it not being due to structural failure is 0.7. The second event involves the diagnosis of the event. If a plane fails due to structural failure, the probability that it will be diagnosed and the results will say it was due to structural failure is 0.85, and the probability that the diagnosis is unable to identify that it was because of a structural failure is 0.15. If the plane were to fail as a result of some other reason aside structural failure, the probability that the diagnosis will show that it was as a result of structural failure is 0.35 and the probability of the diagnosis showing that is is not as a result of structural failure is 0.65. To find the probability that an airplane failed due to structural failure given that it was diagnosed that it failed due to some malfunction, this is the equation;
p = (probability of plane failing and diagnosis reporting that the failure was due to structural failure)/ (probability of diagnosis reporting that failure was due to structural failure)
p = (0.3*0.85)/((0.3*0.85) + (0.7*0.35))
p = 0.51
Answer:
15
Step-by-step explanation:
For question number 1:The plot H = H(t) is the parabola and it reaches its maximum in the moment when exactly at midpoint between the roots t = 0 and t = 23. At that moment t = 23/2 or 11.5 seconds.
For question number 2:To find the maximal height, just simply substitute t = 11.5 into the quadratic equation. The answer would be 22.9.
For question number 3:H(t) = 0, or, which is the same as -16t^2 + 368t = 0.Factor the left side to get -16*t*(t - 23) = 0.t = 0, relates to the very start of the process, when the ash started its way up.The other root is t = 23 seconds, and it is precisely the time moment when the bit of ash will go back to the ground.
The volume of cube and rectangular prism are same. Option B.
Step-by-step explanation:
Given,
The length of the edge of the cube (a) = 5 cm
The dimension of rectangular prism (l×b×h) = 5 cm×25 cm×1 cm
To find the relation between the volume of cube and rectangular prism.
Formula
The volume of a cube = a³ cube cm
The volume of rectangular prism = l×b×h cube cm
Now,
The volume of a cube = 5³ cube cm = 125 cube cm
The volume of rectangular prism = 5×25×1 cube cm = 125 cube cm
Hence,
The volume of cube and rectangular prism are same.