1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inessss [21]
3 years ago
13

In an all boys school, the heights of the student body are normally distributed with a mean of 70 inches and a standard deviatio

n of 5 inches. Using the empirical rule, what percentage of the boys are between 65 and 75 inches tall?
Mathematics
2 answers:
Zepler [3.9K]3 years ago
6 0

Answer:

68%

Step-by-step explanation:

Ket [755]3 years ago
3 0

Answer:

68,3 %

Step-by-step explanation:

Empirical rule establishes:

In a normal distribution with mean μ and standard deviation σ we have a  relation between values of the distribution and intervals describes as follows:

( μ ± σ )  contains  68.3 % of all values of the distribution

( μ ± 2σ )  contains 95,4 %       and

( μ ± 3σ )  contains 99.7 %

In our particular case we have that

( μ ± σ )   ⇒    (  70  ±  5 )   ⇒   ( 65 , 75 )

( μ ± 2σ ) ⇒    ( 70   ±  10 ) ⇒   ( 60 , 80 )     and

( μ ± 3σ ) ⇒    ( 70  ±  15  )  ⇒   ( 55 , 85

As we can clearly see 68,3 % of values fall between values going from 65 up to 75 inches

You might be interested in
Will give brainliest
dmitriy555 [2]

Answer:

<h2><em><u>18</u></em></h2>

Step-by-step explanation:

<em><u>Given</u></em><em><u>, </u></em>

Radius of the cylinder = 3cm

Height of the cylinder = 3cm

<em><u>Therefore</u></em><em><u>, </u></em>

Lateral surface area of the cylinder

= 2\pi rh

= 2\pi \times 3 \times 3 {cm}^{2}

= 2\pi \times 9 {cm}^{2}

= 18\pi {cm}^{2}

<em><u>Hence</u></em><em><u>,</u></em>

<em><u>The</u></em><em><u> </u></em><em><u>required</u></em><em><u> </u></em><em><u>value</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>green</u></em><em><u> </u></em><em><u>box</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>be</u></em><em><u> </u></em><em><u>18</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>

4 0
3 years ago
Read 2 more answers
Which expressions are equivalent to 76(3 + c)?​
dimaraw [331]

Answer:

76c + 228

Step-by-step explanation:

Use the distributive property

76 × 3 = 228

76 × c = 76c

76c + 228

6 0
3 years ago
Read 2 more answers
Multiply (5x^2 + x-4(x+2)
bagirrra123 [75]

Answer:

5x^2-3x-8

Step-by-step explanation:

So you will want this to be simplified.

expanding brackets is a great way of doing this

one you have expanded all brackets u get the answer above

:)

4 0
3 years ago
Evaluate the interval (Calculus 2)
Darya [45]

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

3 0
2 years ago
Tommy, Joel, and Garrett shared a supreme pizza
pogonyaev

Answer:

1/8

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • 62.686to the nearest hundredrhs
    14·2 answers
  • Which number is a perfect square? 33 37 48 49
    6·1 answer
  • Complete the following sentence. If 3/4 =x/8 , then x is equal to what?
    11·1 answer
  • Please help me guysssssssssss I need help.......... Assignment due in 30 MIN!!!!! 1 PIC ATTACHED
    6·2 answers
  • A hair salon in Cambridge, Massachusetts, reports that on seven randomly selected weekdays, the number of customers who visited
    7·1 answer
  • If Free Yer Assets Bank (FYAB) will give you 0.25% compounded quarterly and I.M.A.Q.T.π bank will give you 0.23% interest compou
    9·1 answer
  • Is 49 a perfect square
    15·2 answers
  • I’m stuck please help .
    13·1 answer
  • 48ft= how many yards​
    10·1 answer
  • At a party, 70 people are right-handed
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!