Answer:
UV = 14 ft and m∠TUV = 45°
ST = 20 ft, UV = 14 ft, and m∠UST = 98°
Step-by-step explanation:
Answer: a) 490.91 mph
b) 540 mph
c) speed of the wind = 49.1 mph
Step-by-step explanation:
Given that flight between Joppetown and Jawsburgh took 5 hours and 30 minutes.
Time t = 5.5hours
Distance = 2700 miles
Speed = distance/ time
Speed = 2700/5.5
Speed = 490.91 mph
The return flight took 5 hours of the same distance from = 2700 miles
Speed = 2700/5 = 540 mph
speed of the wind = the difference in the two speed
speed of the wind = 450 - 490.91
speed of the wind = 49.1 mph
Speed = 540m/s
Answer:
Option B.
Step-by-step explanation:
Let the radius of the snare drum = r
and radius of the model = R
Ratio of the dimensions of the snare drum and the model = 1 : 4
So, 
Now as per question, dimensions of the snare drum is multiplied by a scale factor of 
Radius of the snare drum = 
Ratio of the radius of the snare drum and cylindrical model ,



Therefore, the cylinder with Sara's dimensions will be geometrically similar but the scale factor will be 1 : 2
Option B is the answer.
Multiple 11/25 with 4 and 9/20 with 5 so it will be
44/100 and 45/100
well then, the volume of the nose cone will just be the sum of the volume of the cylinder below and the cone above.
since the diameter for both is 8, then their radius is half that, or 4.
![\bf \stackrel{\textit{volume of a cone}}{V=\cfrac{\pi r^2 h}{3}}~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=4\\ h=6 \end{cases}\implies V=\cfrac{\pi (4)^2(6)}{3}\implies V=32\pi \\\\\\ \stackrel{\textit{volume of a cylinder}}{V=\pi r^2 h}~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=4\\ h=6 \end{cases}\implies V=\pi (4)^2(6)\implies V=96\pi \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{volume of the nose cone}}{32\pi +96\pi \implies 128\pi }\qquad \approx \qquad 402.12](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cone%7D%7D%7BV%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%20%5Ccline%7B1-1%7D%20r%3D4%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%284%29%5E2%286%29%7D%7B3%7D%5Cimplies%20V%3D32%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D%5Cpi%20r%5E2%20h%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%20%5Ccline%7B1-1%7D%20r%3D4%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Cpi%20%284%29%5E2%286%29%5Cimplies%20V%3D96%5Cpi%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20the%20nose%20cone%7D%7D%7B32%5Cpi%20%2B96%5Cpi%20%5Cimplies%20128%5Cpi%20%7D%5Cqquad%20%5Capprox%20%5Cqquad%20402.12)