A- Water Molds, Downy mildews and slime molds
The correct answers are:
- Methylation of histone tails in chromatin can promote condensation of the chromatin.
- DNA is not transcribed when chromatin is packaged tightly in a condensed form.
- Acetylation of histone tails is a reversible process.
- Some forms of chromatin modification can be passed on to future generations of cells.
- Acetylation of histone tails in chromatin allows access to DNA for transcription.
Histone modifications are post-translational modifications of histone protein that can affect gene expression by altering chromatin structure or recruiting histone modifiers.The most common modifications are methylation, phosphorylation, acetylation and ubiquitylation. All of them affect the binding affinity between histones and DNA and thus loosening (gene activation) or tightening (gene repression) the condensed DNA.
Histone methylation is a transfer of methyl group by histone methyltransferases to lysine or arginine amino acid of protein. Effect of methylation depends on the type of protein that is modified. Demethylation is the reverse process.
Histone acetylation is the process of adding of an acetyl group(by histone acetyltransferases) to histone proteins and it can also activate or inhibit the gene expression. Deacetilation is reverse process.
Answer:
% of wolves have normal fur.
Explanation:
Given , the allele for white fur is recessive and the allele for normal fur is dominant
Let "N" represents the allele for normal fur and "n" represents the fur for white fur.
As per Hardy Weinberg's principle, the frequency for dominant allele is represented by "p"
Given ,
Then frequency for dominant genotype will be "
"
So, Frequency for wolves with normal fur is

Percentage of the wolves with normal fur is
%
Answer:
a) the molecules can be found in the picture below
b) (i) isocitrate lyase ( isocitrate to glyoxylate)
(ii) malate synthase (glyoxylate to malate)
c) Glyoxylate cycle do no exist in animals
Explanation:
b) in the glyoxylate cycle isocitrate lyase helps in conversion of isocitrate to glyoxylate. Also, helps in conversion of glyoxylate to malate by using malate synthase.
c) Glyoxylate cycle do no exist in animals, it only exist in plants and bacteria. This is because they can produce glucose from acetyl-CoA in required amounts.They have the ability to change acetyl-CoA from fat into glucose. But in animals, this mechanism is not possible.