1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
3 years ago
15

How d you work out 450 divided by 600

Mathematics
1 answer:
puteri [66]3 years ago
5 0
450:600=\frac{450}{600}=\frac{450:10}{600:10}=\frac{45}{60}=\frac{45:15}{60:15}=\frac{3}{4}\\\\or\\\\(look\ at\ the\ picture)\\\\450:600=0.75

You might be interested in
The cost of renting a jumping castle includes a fixed charge of $325 for setup and delivery, and a variable charge of $175 for e
Burka [1]

Answer:

they can rent it for 6 hours

Step-by-step explanation:

7 0
3 years ago
(WILL DO BRAINLIST)
Lynna [10]
You have a function y= \dfrac{3}{2} \left(1+\sin  \left(\dfrac{2t+1}{2}\cdot \pi\right) \right).
Since the range of the function y=\sin x is [-1,1] you have that

-1\le \sin \left(\dfrac{2t+1}{2}\cdot \pi\right)\le 1 \\ 0\le 1+\sin \left(\dfrac{2t+1}{2}\cdot \pi\right) \le 2 \\ 0\le \dfrac{3}{2} \left(1+\sin \left(\dfrac{2t+1}{2}\cdot \pi\right) \right)\le 3.
Answer: The range of given function is [0,3] and the correct choice is C.
6 0
3 years ago
The indicated function y1(x) is a solution of the associated homogeneous equation. Use the method of reduction of order to find
9966 [12]

Answer:

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<em> General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

Given Differential equation  y'' − 5 y' + 4 y = x

Given equation in operator form

        D²y - 5 Dy +  4 y = x

⇒     ( D² - 5 D +  4 ) y =x

⇒    f(D) y = Q

where  f(D) = D² - 5 D +  4 and Q(x) = x

<em>The auxiliary equation  f(m) =0</em>

<em>           m²-5 m + 4 =0</em>

         m² - 4 m - m + 4 =0

        m ( m -4 ) -1 ( m-4) =0

         (m - 1) =0   and ( m-4) =0

        <em> m = 1 and m =4</em>

<em>The complementary function </em>

<em></em>Y_{c} = C_{1} e^{x} + C_{2} e^{4x}<em></em>

<u><em>Step(ii)</em></u>:-

<u><em>particular integral</em></u>

<em>Particular integral</em>

<em>     </em>y_{p} = \frac{1}{f(D)} Q(x) = \frac{1}{D^{2}  - 5 D +  4} X<em></em>

<em>taking common '4' </em>

<em>                          </em>= \frac{1}{4(1 +  (\frac{D^{2}  - 5 D}{4} ))} X<em></em>

<em>                         </em>

<em>                           </em>=\frac{1}{4}  (1 + (\frac{D^{2} -5D}{4})^{-1} )} X<em></em>

<em>applying binomial expression</em>

<em>      ( 1 + x )⁻¹    = 1 - x + x² - x³ +.....       </em>

<em>                          </em>=\frac{1}{4}  (1 - (\frac{D^{2} -5D}{4}) +((\frac{D^{2} -5D}{4})^{2} -...} )X<em></em>

<em>Now simplifying and we will use notation D = </em>\frac{dy}{dx}<em></em>

<em>                        </em>=\frac{1}{4}  (x - (\frac{D^{2} -5D}{4})x +((\frac{D^{2} -5D}{4})^{2}(x) -...}<em></em>

<em>Higher degree terms are neglected</em>

<em>                     </em>=\frac{1}{4}  (x - (\frac{ -5 D}{4}) x)<em></em>

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<u><em>Final answer</em></u><em>:-</em>

<em>          General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

<em></em>

<em>         </em>

<em> </em>

     

4 0
3 years ago
Need it solved correctly for khan academy
RUDIKE [14]

The tiger population loses 3/5 of its size every 2.94 decades

<h3>Rate of change using differential calculus</h3>

The given equation is:

N(t)=710(\frac{8}{125} )^t

Find the derivative of the given function

\frac{dN}{dt} =710(0.064)^tln(0.064)\\\\\frac{dN}{dt} =-1951.7(0.064)^t

When the tiger loses 3/5 of its population

dN/dt = 3/5

Solve for t

\frac{3}{5} =-1951.7(0.064)^t\\\\-0.0003=(0.064)^t

Take the natural logarithm of both sides

ln(-0.0003)=t(ln0.064)\\\\-8.087=-2.75t\\\\t=\frac{-8.087}{-2.75} \\\\t=2.94

The tiger population loses 3/5 of its size every 2.94 decades

Learn more on rate of change using calculus here: brainly.com/question/96116

#SPJ1

6 0
2 years ago
Solve for X please!!!!!!!!!!!!! I need this answer ASAP<br><br> 2x + 1/3x = 21
Trava [24]
<h2>x = 9</h2><h3 />

<u>We know:</u>

  • we can add/subtract the same expression to both sides of the equation to get an equivalent equation;
  • we can multiply/divide both sides of the equation by the same non-zero number to get the equivalent equation.

<u>Equivalent equations</u> are algebraic equations that have identical solutions.

We have the equation:

2x+\dfrac{1}{3}x=21

<h3>SOLUTION:</h3>

<em>multiply bot sides by 3</em>

<em />3\cdot2x+3\!\!\!\!\diagup\cdot\dfrac{1}{3\!\!\!\!\diagup}x=3\cdot21\\\\6x+x=63\\\\7x=63

<em>divide both sides by 7</em>

<em />\dfrac{7\!\!\!\!\diagup x }{7\!\!\!\!\diagup}=\dfrac{63}{7}\\\\\boxed{x=9}

6 0
1 year ago
Read 2 more answers
Other questions:
  • Team:<br>Round to the nearest whole: 90.1​
    9·2 answers
  • Georgia needs to buy flea treatment for her dog. pet store 1 is offering the flea treatment for 40 percent off plus an additiona
    5·2 answers
  • HELP THIS IS DUE AT 12
    6·2 answers
  • Please help me put these in order if u can
    6·2 answers
  • Mhanifa can you please help? Look at the picture attached. I will mark brainliest!
    6·1 answer
  • A cookie recipe calls for 3 eggs
    9·1 answer
  • PLZ HELP!!! I Will give brainliest. What is the value of x in sin(3x)=cos(6x) if x is in the interval of 0≤x≤π/2
    12·1 answer
  • On a certain hot​ summer's day, 310 people used the public swimming pool. The daily prices are $1.75 for children and $2.50 for
    15·1 answer
  • Please i need help catching up, what is this? im giving out brainliest
    6·1 answer
  • What is the length of CD? In this diagram, AABC~ AEDC.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!