B because it u and 9 friends each want the same amount from splitting 1.30 which gives you .13
Answer: 25%
Step-by-step explanation: The question tells us that the population decreases by 1/4 every single year. That means, since 1/4 equals .25, the population decreases by 25% every year :)
Answer:
1+i
Step-by-step explanation:
To find the 8th roots of unity, you have to find the trigonometric form of unity.
1. Since
then

and

This gives you 
Thus,

2. The 8th roots can be calculated using following formula:
![\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bz%7D%3D%5C%7B%5Csqrt%5B8%5D%7B%7Cz%7C%7D%20%28%5Ccos%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%29%2C%20k%3D0%2C%5C%201%2C%5Cdots%2C7%5C%7D.)
Now
at k=0, ![z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;](https://tex.z-dn.net/?f=z_0%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%29%3D1%5Ccdot%20%281%2B0%5Ccdot%20i%29%3D1%3B)
at k=1, ![z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_1%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=2, ![z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;](https://tex.z-dn.net/?f=z_2%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%29%3D1%5Ccdot%20%280%2B1%5Ccdot%20i%29%3Di%3B)
at k=3, ![z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_3%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=4, ![z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;](https://tex.z-dn.net/?f=z_4%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%29%3D1%5Ccdot%20%28-1%2B0%5Ccdot%20i%29%3D-1%3B)
at k=5, ![z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_5%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=6, ![z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;](https://tex.z-dn.net/?f=z_6%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%29%3D1%5Ccdot%20%280-1%5Ccdot%20i%29%3D-i%3B)
at k=7, ![z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_7%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
The 8th roots are

Option C is icncorrect.
Answer:
1:2.33
Step-by-step explanation:
Divide 107.8 by 46.2 to get how much 107.8 equals when 46.2 equals 1. you get 1:2.33.