Answer:
44%
Step-by-step explanation:
you add up all the numbers to get the total then divied the single number (eg. 8) by the total. It will then show up as a decimal so in order to get rid of the decimal you multiply by 100. ( eg. 8 ÷50=0.16 → 0.16×100= 16 → 16% )
Answer:
Yes
Step-by-step explanation:
1 : The athlete's hands push the medicine ball forward. The medicine ball pushes the athlete's hands backward.
2: Friction
3: The first pair of action-reaction force pairs is: foot A pushes ball B to the right; and ball B pushes foot A to the left. The second pair of action-reaction force pairs is: foot C pushes ball B to the left; and ball B pushes foot C to the right
Answer:
We have been given a unit circle which is cut at k different points to produce k different arcs. Now we can see firstly that the sum of lengths of all k arks is equal to the circumference:

Now consider the largest arc to have length \small l . And we represent all the other arcs to be some constant times this length.
we get :

where C(i) is a constant coefficient obviously between 0 and 1.

All that I want to say by using this step is that after we choose the largest length (or any length for that matter) the other fractions appear according to the above summation constraint. [This step may even be avoided depending on how much precaution you wanna take when deriving a relation.]
So since there is no bias, and \small l may come out to be any value from [0 , 2π] with equal probability, the expected value is then defined as just the average value of all the samples.
We already know the sum so it is easy to compute the average :

If you know how to solve word problems involving the sum of consecutive even integers, you should be able to easily solve word problems that involve the sum of consecutive odd integers. The key is to have a good grasp of what odd integers are and how consecutive odd integers can be represented.
Odd Integers
If you recall, an even integer is always 22 times a number. Thus, the general form of an even number is n=2kn=2k, where kk is an integer.
So what does it mean when we say that an integer is odd? Well, it means that it’s one less or one more than an even number. In other words, odd integers are one unit less or one unit more of an even number.
Therefore, the general form of an odd integer can be expressed as nn is n=2k-1n=2k−1 or n=2k+1n=2k+1, where kk is an integer.
Observe that if you’re given an even integer, that even integer is always in between two odd integers. For instance, the even integer 44 is between 33 and 55.
Step-by-step explanation:
a=110. x,55
y=180-(x+75)=50
w,75
b,110
x,40
y,30