Answer:
The distance between (-1,5) and (2,5) is √9 or 3.
Step-by-step explanation:
Okay first, just for explaining purposes, let's call the ordered pair (-1,5) letter A and ordered pair (2,5) letter B.
Now to the answer. To start you use the distance formula. which is:
d=√( (x2-x1)²+(y2-y1)²)
Then you solve by plugging the ordered pairs into the formula where -1 from point A is X1 and 5 from point A is Y1. 2 from point B is X2 and 5 from point B is Y2.
When you solve it should look like this:
1. d=√( (x2-x1)²+(y2-y1)²)
2. d=√( (2- -1)²+(5-5)²) *2 minus a negative one means plus so we get 3*
3. d=√( (3)²+(0)²)
4. d=√( 9+0)
5. √9 = 3
Answer:
Id love to help but I do not under stand this kind of math
Step-by-step explanation:
Sorry
Answer:
1 = 439,760
2= 43,976,000
3= 439,760,000
4= 43,976,000,000
Step-by-step explanation:
You can easily <u>get</u><u> </u><u>the</u><u> </u><u>answers</u><u> </u><u>by</u><u> </u><u>multiplying</u><u> </u><u>each</u><u> </u><u>by</u><u> </u><u>100</u><u>,</u><u>000</u>
So whenever a problem says "of" a value, multiply.
24 * 1/3 = 24/3 = 8
She saved 8 dollars.
Hope this helps! If you have any questions, just ask!
Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)