Answer:

Explanation:
The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.
Let us find the acceleration:


Electric force is given as the product of charge and electric field strength:
F = qE
where q = electric charge
E = Electric field strength
Force is generally given as:
F = ma
where m = mass
a = acceleration
Equating both:
ma = qE
E = ma / q
For an electron:
m = 9.11 × 10^{-31} kg
q = 1.602 × 10^{-19} C
Therefore, the electric field strength of the electron is:

1. A. 6.00 sec
The graph shows the velocity of an object (y-axis) versus the time (x-axis). In order to find when the magnitude of the velocity reaches 36.00 km/h, we should find the time t (x-coordinate) at which the velocity (y-coordinate) is 36.
By looking at the graph, we see that this occurs when t=6.00 s.
2. A. positive acceleration
In a velocity-time graph like this one, the slope of the curve corresponds to the acceleration of the object. In fact, acceleration is defined as:

where
is the variation of velocity and
is the variation of time. We see that this quantity corresponds to the slope of the curve in the graph (in fact,
represents the increment of the y coordinate, while
represents the increment of the x coordinate). So, a positive slope means a positive acceleration: in this case, the slope is positive, so the acceleration is also positive.
The answer would be red giants and supergiants
Astronomers can measure a star's position once, and then again 6 months later and calculate the apparent change in position. The star's apparent motion is called stellar parallax. The distance d is measured in parsecs and the parallax angle p is measured in arcseconds.
I hope this helps!
By using the combined gas law which says that P1V1/T1 = P2V2/T2, assuming constant pressure, the volume at the required temperature can be obtained.((0.002 m3)(50+273.15))/(20+273.15) = volume 2 at 50 degrees C.
This gives the answer 0.0022048 m3