1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enot [183]
2 years ago
11

What will be the final velocity of a rock if we drop it off of a bridge and it strikes the ground 2.8s later (ignoring air resis

tance)?
Physics
1 answer:
mars1129 [50]2 years ago
5 0
Formula for final velocity: Vf= vi+(a*t)
Vi- initial velocity, a=acceleration, t-time

Vf=vi+(at)
Vf= 0+(9.8m/s*2.8s)
Vf= 27.44 m/s

The acceleration of the Earth when dropping something would be 9.8 m/s

Here is an reference that can help you answer problems like these.
Hope this helps and good luck :)

You might be interested in
For a satellite of mass mS in a circular orbit of radius rS around the Earth, determine its kinetic energy, K . Express your ans
agasfer [191]

Since it is asking you to find the kinetic energy in relation to the mass, radius, mechanical energy (total energy), and constants, you will need to setup an equation first to "find" the Mechanical Energy, so that we can then solve for the kinetic energy, as from my experience with high school physics, there is only the graviational potential energy equation and force in relation to celestial bodies.

Knowing the ME is the total energy, we add up the energies of the system. Since it is being influenced by the Earth, as per the problem stating the satellite has circular orbit around the Earth, we know there is gravitational potential. Since it is orbiting, we can assume some type of velocity. Nothing else that we need to worry about should be occuring at this level of physics, leaving you with

ME= Ug+K

from here we solve for K, as plugging in could get confusing and messy at the moment.

ME-Ug=K

now using the equations presumably given in class, if not then using this equation, we can find the Ug

Ug=(-(Gm*M)/r)     note that M is the mass of the Earth and m is the satellite

this should give us

ME-(-(GmM)/r)=K

since there is a negative being subracted, we can change that to

ME+(GmM)/r=K

I believe this should be fine, as the Earth's mass is constant, but if not, then all you need to figure left is how to get rid of the M in the equation, as the rest of the terms and constants are for sure within the requirements.

8 0
2 years ago
How did thomson’s findings revise dalton’s atomic theory??
Burka [1]
Dalton thought that atoms were indivisible particles, and Thomson's discovery of the electron proved the existence of subatomic particles. ... The positive and negative charges cancel producing a neutral atom. images.tutorvista.com. Later discoveries by Rutherford and others lead to additional revisions to atomic theory.
8 0
3 years ago
The current in a stream runs at 5 miles per hour. if a boat can go 15 miles per hour on still water, how fast can the boat go do
arsen [322]
Down stream it would be going 20 mph and up stream 10 mph
3 0
3 years ago
Match the following items.
Ray Of Light [21]

Answer:

Je ne Sachez que Qu’est-ce que le

8 0
2 years ago
A rock with a mass of 540 g in air is found to have an apparent mass of 342 g when submerged in water. (a) What mass of water is
AleksandrR [38]

(a) 198 g

When the rock is submerged into the water, there are two forces acting on the rock:

- its weight, equal to W=mg (m=mass, g=acceleration of gravity), downward

- the buoyant force, equal to B=m_w g (m_w=mass of water displaced), upward

So the resultant force, which is the apparent weight of the rock (W'), is

W'=W-B

which can be rewritten as

m'g = mg-m_w g

where m' is the apparent mass of the rock. Using:

m = 540 g

m' = 342 g

we find the mass of water displaced

m_w = m-m'=540 g-342 g=198 g

(b) 1.98\cdot 10^{-4} m^3

If the rock is completely submerged, the volume of the rock corresponds to the volume of water  displaced.

The volume of water displaced is given by

V_w = \frac{m_w}{\rho_w}

where

m_w = 198 g = 0.198 kg is the mass of the water displaced

\rho_w = 1000 kg/m^3 is the density of the water

Substituting,

V_w = \frac{0.198}{1000}=1.98\cdot 10^{-4} m^3

And so this is also the volume of the rock.

(c) 2727 kg/m^3

The average density of the rock is given by

\rho = \frac{m}{V}

where

m = 540 g = 0.540 kg is the mass of the rock

V=1.98\cdot 10^{-4} m^3 is its volume

Substituting into the equation, we find

\rho = \frac{0.540 kg}{1.98\cdot 10^{-4}}=2727 kg/m^3

3 0
3 years ago
Other questions:
  • Astronomers use the _______ of stars to determine how hot they are and their _______ to estimate how far away they are. A. brigh
    6·1 answer
  • The race car was was moving for 3.7 hours and during that time moved 500 miles east. What is the speed? What is the velocity?
    13·1 answer
  • Several books are placed on a table. These books have a combined weight of 25 N and cover an area of 0.05 m2. How much pressure
    5·1 answer
  • A nonconducting sphere has radius R = 2.81 cm and uniformly distributed charge q = +2.35 fC. Take the electric potential at the
    7·1 answer
  • The period of a mechanical wave is 5 seconds. what is the frequency of the wave?
    5·2 answers
  • Where are you MOST likely to find platinum? Check all that apply.
    10·1 answer
  • Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge b
    11·1 answer
  • Discuss what it means to view a moving objectt from a frame of reference. Supply an example that illustrates your explanation.
    7·1 answer
  • How were lion fish introduced to the areas around Florida
    15·2 answers
  • Solids, liquids, and gases are very often depicted as groups of particles inside containers of fixed shape and dimension.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!