Answer:
The required pressure is 6.4866 atm.
Explanation:
The given data : -
In the afternoon.
Initial pressure of tire ( p₁ ) = 7 atm = 7 * 101.325 Kpa = 709.275 Kpa
Initial temperature ( T₁ ) = 27°C = (27 + 273) K = 300 K
In the morning .
Final temperature ( T₂ ) = 5°C = ( 5 + 273 ) K = 278 K
Given that volume remains constant.
To find final pressure ( p₂ ).
Applying the ideal gas equation.
p * v = m * R * T


= 657.2615 Kpa = 6.486 atm
You could put ice, put it on wheels!
Answer:
d.20760 J
Explanation:
We are given that
Mass of cart=m=100 kg
At the top,h=22 m
Amount of energy convert into heat due to friction=E=800 J
We have to find the kinetic energy at the bottom of the ramp.
Potential energy drop=mgh=
Kinetic energy at the bottom=Potential energy drop-energy lost due to friction
Kinetic energy at the bottom =(21560-800) J
Kinetic energy at the bottom=20760 J
Hence, the kinetic energy at the bottom of the ramp=20760 J
d.20760 J