Answer:
The system of equations is given as:
x + y = 2.5 .... Equation 1
1.8x + 1.8y = 4.05....Equation 2
Step-by-step explanation:
Kiran says, "I bought 2.5 pounds of red and yellow lentils. Both were $1.80 per pound. I spent a total of $4.05
Let
x represent red lentils
y represent yellow lentils.
x + y = 2.5 .... Equation 1
x = 2.5 - y
$1.80 × x + $1.80 × y = $4.05
1.80x + 1.80y = 4.05....Equation 2
The system of equations is given as:
x + y = 2.5 .... Equation 1
1.8x + 1.8y = 4.05....Equation 2
Answer:
54
Step-by-step explanation: you add 35 and 11 together then subtract 100 by the number you got to get the anwser
Complete the table for the function y = 0.1^x
The first step: plug values from the left column into the ‘x’ spot in the formula <u>y=0.1^x</u>.
* 0.1^-2 : We can eliminate the negative exponent value by using the rule a^-1 = 1/a. Keep this rule in mind for future problems. (0.1^-2 = 1/0.1 * 0.1 = 100).
* 0.1^-1 = 1/0.1 = 10
* 0.1^0 = 1 : (Remember this rule: a^0 = 1)
* 0.1^1 = 0.1
Our list of values: 100, 10, 1, 0.1
Now, we can plug these values into your table:
![\left[\begin{array}{ccc}x&y\\2&10\\1&10\\0&1\\1&0.1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%26y%5C%5C2%2610%5C%5C1%2610%5C%5C0%261%5C%5C1%260.1%5Cend%7Barray%7D%5Cright%5D)
The points can now be graphed. I will paste a Desmos screenshot; try to see if you can find some of the indicated (x,y) values: [screenshot is attached]
I hope this helped!
Answer:
<h3>
<em>a</em><em>.</em><em> </em><em> </em><em>1</em><em>1</em></h3><h3>
<em>b</em><em>.</em><em> </em><em> </em><em>9</em></h3>
<em>Sol</em><em>ution</em><em>,</em>
<em>a</em><em>.</em><em> </em><em> </em><em> </em><em>Given</em><em>,</em>
<em>X=</em><em>4</em>
<em>y</em><em>=</em><em>3</em>
<em>Now</em><em>,</em>
<em>
</em>
<em>b</em><em>.</em><em> </em><em>Given,</em>
<em>a</em><em>=</em><em>-</em><em>2</em>
<em>b</em><em>=</em><em>5</em>
<em>Now</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>