Answer:
Explanation:
conjugate acid, based on Brønsted–Lowry acid–base theory, is a chemical compound that is formed by the reception of a proton by a base
a. CH₃COOH + H₂O ⇌ H₃0⁺ + CH₃C00-
Acid <> CH₃COOH
Base <> H₂O
Conjugate acid <> H₃0 +
Conjugate base <>CH₃C00-
b. HCO₃ + H₂O ⇌ H₂CO₃⁻ + OH⁻
Acid <> H₂O
Base <> HCO₃
Conjugate acid <> H₂CO₃⁻
Conjugate base <>OH⁻
C. HNO₃ + SO₄²⁻ ⇌ HSO₄⁻ + NO₃⁻
Acid <>HNO₃
Base <>SO₄²⁻
Conjugate acid <>HSO₄⁻
Conjugate base <>NO₃⁻
A Bronsted acid is reffered to as a proton donor while a Bronsted base is a proton acceptor
Answer:
The solution is neither acidic or basic. An acid is a substance that donates hydrogen ions. ... Because the base "soaks up" hydrogen ions, the result is a solution with more hydroxide ions than hydrogen ions. This kind of solution is alkaline. Acidity and alkalinity are measured with a logarithmic scale called pH.
Explanation:
Hydroxylamine in water: HONH₂(aq) + H₂O(l) ⇄ HONH₃⁺(aq) + OH⁻(aq).
Hydroxylammonium nitrate in water: HONH₃NO₃(aq) → OHNH₃⁺(aq) + NO₃⁻(aq).
1) with positive hydrogen ions (protons) react base and gives weak conjugate acid:
H⁺(aq) + HONH₂(aq) ⇄ HONH₃⁺(aq).
2) with hydroxide anions react acid and produce weak base and weak electrolyte water:
HONH₃⁺(aq) + OH⁻(aq) ⇄ HONH₂(aq) + H₂O(l).
Answer:
12.10 mol / 1 L
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity ( unit = mol / L or M )
V = volume of solution in liter ( unit = L ),
n = moles of solute ( unit = mol ),
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
The data given is as follows -
w = 439 g
As , we known for HCl ,
m = 36.46 g/mol
V = 1 L
From the above data ,
Moles are given as -
n = w / m
n = 439 / 36.26 = 12.10 mol ,
Now , the molarity is given as ,
M = n / V
M = 12.10 mol / 1 L
M = 12.10 mol /L
It’s x200 plus 300 that’s why it is that answer