<span>Studying the changes in densities of pocket gophers when large herbivores such as elk are excluded from mountain forests would be an example of studying ecology at the community level.
A community refers to a group of organisms of various species that live in the same location and interact with each other. So, if this scientist is observing gophers and elks, they are looking at the level of communities, not anything more or less.
</span>
The statement that best describes ecological succession is that it always occurs in a predictable pattern. The process is also slow. The correct answer is C.
Answer:
It is a beneficial mutation.
Explanation: Mutations are permanent changes in the nucleotide sequence of a DNA. Mutations can beneficial, neutral and harmful or deleterious. When change in the nucleotide sequence of DNA a mutation enhances the effectiveness of a protein or improves the protein function, it is said to be beneficial. When a mutation causes the synthesis of a protein which have the same amino acid as the original protein and performs the same function as the original protein, it is said to be silent or neutral. When a mutation results in the synthesis of a protein with an altered amino acid sequence and a nonfunctional protein, it is said to be harmful.
A. light energy, above the arrow
<span>Photosynthesis is a process wherein light energy is converted into chemical energy. </span>
Components of photosynthesis:
Water
Carbon Dioxide
Light energy, mostly from sunlight, is the main requirement for photosynthesis to occur.
Answer:
C)Parental: 41% Dr, 41% dR; recombinant: 9% DR, 9% dr.
Explanation:
The notation Dr/dR for genotypes means that one homologous chromosome has the alleles Dr and the other homologous chromosome has the alleles dR.
The heterozygous plant Dr/dR will produce 4 types of gametes: two identical to the chromosmes the individual has in its somatic cells (called parental), and two gametes which will be a mix of the alleles in the homologous chromosomes (called recombinant).
- Dr: parental
- dR: parental
- DR: recombinant
- dr: recombinant
To calculate the frequency of each type of gamete, we must use the formula:
Distance (map units) / 100 = frequency of recombination.
18 mu / 100 = 0.18.
The total frequency of recombination between the genes D and R is 0.18, but every time crossing over happens, two recombinant gametes are generated. Therefore, each recombinant gamete will have a frequency of 0.18/2=0.09 = 9%.
The frequency of parental gametes will be:
1 - frequency of recombinant gametes
1 - 0.18 = 0.82
But there are 2 parental gametes, so each of them will have a frequency of 0.82/2=0.41 = 41%.