They are both light resources.
mark brainly man.
☺☺☺
Answer:
Thymine in DNA occurs as the result of thymidylate synthase creating deoxythymidine monophosphate (dTMP), which then undergoes phosphorylation to deoxythymidine diphosphate (dTDP), then to Deoxythymidine triphosphate (dTTP), and incorporated into DNA by the DNA polymerase (DNA pol). Thymine in tRNA arises post-transcriptionally, by S-adenosylmethionine-dependent methylation of a uridine 5'-monophosphate (UMP) residue in RNA.
Explanation:
Thymidylate synthase is an enzyme involved in <em>de novo</em> DNA synthesis. This enzyme (thymidylate synthase) catalyzes the transfer of the one-carbon group from 5,10-methylene-tetrahydrofolate (5,10-CH2-THF) to deoxyuridine monophosphate (dUMP) and subsequent methylation to produce deoxythymidine monophosphate (dTMP), which is then phosphorylated to deoxythymidine triphosphate (dTTP) by kinases and incorporated into DNA. On the other hand, specific tRNA methylases catalyze the methylation of transference RNA (tRNA) by using S-adenosylmethionine as a methyl donor. Since tRNA methylation is a post-transcriptional modification, this chemical reaction is considered an epitranscriptomic modification on the RNA molecule.
Answer:
Pulmonary circulation moves blood between the heart and the lungs. It transports deoxygenated blood to the lungs to absorb oxygen and release carbon dioxide. The oxygenated blood then flows back to the heart. Systemic circulation moves blood between the heart and the rest of the body.
Explanation:
Answer:
c. birds are baited by the metal hook...
Explanation: