Answer:
Option B (Static NAT) would be the correct choice.
Explanation:
- Static NAT seems to be a method of NAT methodology used to navigate as well as monitor internet usage from some kind of specific public IP address to something like a private IP address.
- Everything always allows the provision of web access to technology, repositories including network equipment inside a protected LAN with an unauthorized IP address.
Some other decisions made aren't relevant to the situation in question. So the above alternative is indeed the right one.
Resource allocation is a function performed by control programs that manages computer resources, such as storage and memory. It is necessary for any application to be run on the system because the computer is required to allocate certain resources for it to be able to run once the user opens any program.
Answer:
The fundamental limitation of symmetric (secret key) encryption is ... how do two parties (we may as well assume they are Alice and Bob) agree on a key? In order for Alice and Bob to communicate securely they need to agree on a secret key. In order to agree on a secret key, they need to be able to communicate securely. In terms of the pillars of IA, To provide CONFIDENTIALITY, a secret key must first be shared. But to initially share the key, you must already have CONFIDENTIALITY. It's a whole chicken-and-egg problem.
This problem is especially common in the digital age. We constantly end up at websites with whom we decide we want to communicate securely (like online stores) but with whom we there is not really an option to communicate "offline" to agree on some kind of secret key. In fact, it's usually all done automatically browser-to-server, and for the browser and server there's not even a concept of "offline" — they only exist online. We need to be able to establish secure communications over an insecure channel. Symmetric (secret key) encryption can't do this for us.
Asymmetric (Public-key) Encryption
Yet one more reason I'm barred from speaking at crypto conferences.
xkcd.com/177/In asymmetric (public key) cryptography, both communicating parties (i.e. both Alice and Bob) have two keys of their own — just to be clear, that's four keys total. Each party has their own public key, which they share with the world, and their own private key which they ... well, which they keep private, of course but, more than that, which they keep as a closely guarded secret. The magic of public key cryptography is that a message encrypted with the public key can only be decrypted with the private key. Alice will encrypt her message with Bob's public key, and even though Eve knows she used Bob's public key, and even though Eve knows Bob's public key herself, she is unable to decrypt the message. Only Bob, using his secret key, can decrypt the message ... assuming he's kept it secret, of course.
Explanation:
Answer:
having a capital and lower case letters and a special characters and numbers.
Explanation:
it should be hard but easy enough to remember and no one will know