Answer:
he bought the t shirt for rs 1880
Answer:
answer is A and C
Step-by-step explanation:
here you go
Answer:
The unusual
values for this model are: 
Step-by-step explanation:
A binomial random variable
represents the number of successes obtained in a repetition of
Bernoulli-type trials with probability of success
. In this particular case,
, and
, therefore, the model is
. So, you have:









The unusual
values for this model are: 
Answer:
x ≈ -4.419
Step-by-step explanation:
Separate the constants from the exponentials and write the two exponentials as one. (This puts x in one place.) Then use logarithms.
0 = 2^(x-1) -3^(x+1)
3^(x+1) = 2^(x-1) . . . . . add 3^(x+1)
3×3^x = (1/2)2^x . . . . .factor out the constants
(3/2)^x = (1/2)/3 . . . . . divide by 3×2^x
Take the log:
x·log(3/2) = log(1/6)
x = log(1/6)/log(3/2) . . . . . divide by the coefficient of x
x ≈ -4.419
_____
A graphing calculator is another tool that can be used to solve this. I find it the quickest and easiest.
_____
<em>Comment on alternate solution</em>
Once you get the exponential terms on opposite sides of the equal sign, you can take logs at that point, if you like. Then solve the resulting linear equation for x.
(x+1)log(3) = (x-1)log(2)
x=(log(2)+log(3))/(log(2)-log(3))