Answer:
Ok, primero, como lo deducimos gráficamente?
Sigamos estos pasos.
Dibujemos en una recta, la distancia entre el punto 0 soles y el precio de la bicicleta = 200 soles.
200 soles representa el 100%.
Ella lo quiere vender al 80% (o le quiere restar el 20%).
Entonces, con una regla, medir la distancia entre 0 soles y 200 soles.
Dividir esa cantidad por 10. (cada una de estas cantidades va a representar un 10%)
Multiplicar eso por 8.
Esa cantidad es el equivalente al 80% del precio de la bicicleta.
Abajo hay un dibujo donde se ve el método.
Una forma mas matemática de resolverlo es:
200 soles = 100%.
x soles = 80%
x es el precio al que ella va a vender la bicicleta:
Veamos el cociente de esas dos ecuaciones:
200/x = 100%/80%
x = 200*(80%/100%) = 160
Ella vendería la bicicleta en 160 soles.
Answer:
It is growth and the percentage rate of increase is 7.5%
Step-by-step explanation:
The exponential equation is as follows;
y = 550(1.075)^x
Now, I can identify that the exponential equation is that of growth.
This is because what is in the bracket i.e can be represented as 1+ 0.075
The 0.075 represents the margin of increase as we move on from one value to another
The percentage rate can be gotten by expressing 0.075 as a percentage
That would be expressing is as a fraction
This is just 7.5/100 which means what we have is 7.5%
Answer:
40
Step-by-step explanation:
AFE=120 so arc AE is also 120
those 3 angles add up to 180 and 180-120-20=40
Answer: 10 inches.
Step-by-step explanation:
We have to solve a system of equations.
The formula to calculate a triangle area is A = (b.h)/2
where b is the base and h is the height. This will be our first equation.
Since the height is 4 inches greater than the base, the second equation will be: h = b+4
We replace h and the value of the area (70 square inches) in the first equation, and we solve it by using the cuadratic equation formula:
70 = (b . (b+4)) / 2
70 . 2 = b² + 4b
140 = b² +4b
0 = b² + 4b - 140
The roots of this polynomial are -14 and 10. Since a distance can't be negative, the length of the base is 10 inches.