Answer: D
Step-by-step explanation:
It shows the bar going left, meaning its going higher, and we only marked 2
Answer:
see explanation
Step-by-step explanation:
let pq = x
given oq - pq = 1 then oq = 1 + x
Using Pythagoras' identity, then
(oq)² = 7² + x²
(1 + x)² = 49 + x² ( expand left side )
1 + 2x + x² = 49 + x² ( subtract 1 from both sides )
2x + x² = 48 + x² ( subtract x² from both sides )
2x = 48 ( divide both sides by 2 )
x = 24 ⇒ pq = 24
and oq = 1 + x = 1 + 24 = 25 ← hypotenuse
sinq =
= 
cosq =
= 
Answer:
Step-by-step explanation:
Rationalize the denominator of b. So, multiply the numerator and denominator by 

Now, find a +b

Combine like terms

Now find (a + b)²
(a +b)² = 

Hint: 
The answer to the question
For parts A, B, C, and D you most likely created a line. What question E is asking is for you to create a line that is perpendicular to the line you already created that also passes through the point (1,1). What is important to understand here is that the slope of the perpendicular line is the negative reciprocal of the original line's slope... if the original slope is (-4/3) than the perpendicular slope is (3/4)... then you should just plug that new slope into point-slope form or slope-intercept form to get your equation... y-y1 = m(x-x1) ... y-1= (3/4)(x-1) ... so it would be y=(3/4)x + 1/4 then for part f just convert into standard form which is just manipulating the variables... look up standard form equation on Google and manipulate the variables from there.