AlPO4----> Al+3 + PO4-3
Ksp= [Al+3] x [PO4-3]= 9.84 x 10^-21
Ksp= (x) (x)= x^2
X^2= 9.84x10-21
x= 9.92 x 10^-11
The molar solubility is 9.92 x 10^-11
Answer:
antimony-121 has the highest percent natural abundance
Explanation:
percent natural abundance;
121.76 = 120.90 x + 122.90 (1 - x)
121.76 = 120.90 x + 122.90 - 122.90x
121.76 = -2x + 122.90
121.76 - 122.90 = -2x
x= 121.76 - 122.90/ -2
x= 0.57
Where x and 1 - x refers to the relative abundance of each of the isotopes
Percent natural abundance of antimony-121 = 57 %
Percent natural abundance of antimony-123 = (1 - 0.57) = 43%
Let us remember that isotopy refers to a phenomenon in which atoms of the same element have the same atomic number but different mass numbers. This results from differences in the number of neutrons in atoms of the same element.
We can clearly see that antimony-121 has the highest percent natural abundance.
Hidrogen gas is a diatomic gas, this is H2, which means that one molecule of gas has two atoms (every molecule of hydrogen gas consists in H2).
The particles in gases are the molecules, not atoms.
So, every molecule is a particle, and when you are told that you have 1 mole of hygrogen gas means that you have 1 mole of H2 molecules which is the same that 1 mole of particles.
Therefore, the answer is one mole.
Answer:
<em>The pKa is 13.0.</em>
Explanation:
pKa + pKb = 14
Given, Kb of trimethylamine = 6.3 × 
pKb = - log (6.3 ×
)
= 1.0
⇒ pKa = 14 - pKb = 14 - 1.0
<u>pKa = 13.0</u>
<em><u></u></em>
<em>Check: For most weak acids, pKa ranges from 2 to 13.</em>