Answer:
the anwser would be B obtain energy
Explanation:
Answer:
Se =[Ar] 3d¹⁰ 4s² 4p⁴
Explanation:
The noble gas notation is used for the shortest electronic configuration of other periodic table elements.
For example:
The atomic number of Argon is 18, and its electronic configuration is,
Ar₁₈ = 1s² 2s² 2p⁶ 3s² 3p⁶
The atomic number of selenium is 34, its electronic configuration is,
Se₃₄ = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁴
By using the noble gas notation, electronic configuration of selenium can be written is shortest form.
Se =[Ar] 3d¹⁰ 4s² 4p⁴
This electronic configuration is also called abbreviated electronic configuration.
4. The pressure of the inner core is higher than the outer core
5. The coolest layers are farthest from the core
the prefix of the second word indicates that a molecule of carbon dioxide indicates that the compound contains two oxygen atoms
Answer:
- <em>The solution expected to contain the greatest number of solute particles is: </em><u>A) 1 L of 1.0 M NaCl</u>
Explanation:
The number of particles is calculated as:
a) <u>For Ionic compounds</u>:
- molarity × volume in liters × number of ions per unit formula.
b) <u>For covalent compounds</u>:
- molarity × volume in liters
The difference is a factor which is the number of particles resulting from the dissociation or ionization of one mole of the ionic compound.
So, calling M the molarity, you can write:
- # of particles = M × liters × factor
This table show the calculations for the four solutions from the list of choices:
Compound kind Particles in solution Molarity # of particles
(dissociation) (M) in 1 liter
A) NaCl ionic ions Na⁺ and Cl⁻ 1.0 1.0 × 1 × 2 = 2
B) NaCl ionic ions Na⁺ anc Cl⁻ 0.5 0.5 × 1 × 2 = 1
C) Glucose covalent molecules 0.5 0.5 × 1 × 1 = 0.5
D) Glucose covalent molecules 1.0 1.0 × 1 × 1 = 1
Therefore, the rank in increasing number of particles is for the list of solutions given is: C < B = D < A, which means that the solution expected to contain the greatest number of solute particles is the solution A) 1 L of 1.0 M NaCl.