Answer:
15 units
Step-by-step explanation:
I just took this geometry test with the same question. Its 15
Answer:
<h3>
</h3>
Step-by-step explanation:
?
Now, Using Pythagoras theorem
plug the values
⇒
Evaluate the power
⇒
Swap the sides of the equation
⇒
Move constant to right hand side and change it's sign
⇒
Calculate the difference
⇒
Squaring on both sides
⇒
Hope I helped!
Best regards!
Step-by-step explanation:
None of these,
a(under root),a, a(square)
this is the correct answer
Answer:
ŷ = 739.49X + 4876.43
y = 6755.98 - 388.24x + 125.30x²
y = 5428.98(1.09)^x
B.)
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1
Step-by-step explanation:
X :
1
2
3
4
5
6
7
8
Y:
6231
6574
7237
7211
7701
8581
10302
11796
Using the online linear regression calculator :
The linear trend :
ŷ = 739.49X + 4876.43
Where x = year
With 2006 representing 1 ; and so on
Slope = m = 739.49
Intercept (c) = 4876.43
y = predicted variable
The quadratic model:
General form:
y = A + Bx + Cx²
y = 6755.98 - 388.24x + 125.30x²
The exponential model:
y = AB^x
y = 5428.98(1.09)^x
B.) Next three years :
Year 2009 ; x = 9
Year 2010 ; x = 10
Year 2011 ; x = 11
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1