Answer:
a)0.6192
b)0.7422
c)0.8904
d)at least 151 sample is needed for 95% probability that sample mean falls within 8$ of the population mean.
Step-by-step explanation:
Let z(p) be the z-statistic of the probability that the mean price for a sample is within the margin of error. Then
z(p)=
where
- Me is the margin of error from the mean
- s is the standard deviation of the population
a.
z(p)=
≈ 0.8764
by looking z-table corresponding p value is 1-0.3808=0.6192
b.
z(p)=
≈ 1.1314
by looking z-table corresponding p value is 1-0.2578=0.7422
c.
z(p)=
≈ 1.6
by looking z-table corresponding p value is 1-0.1096=0.8904
d.
Minimum required sample size for 0.95 probability is
N≥
where
- z is the corresponding z-score in 95% probability (1.96)
- s is the standard deviation (50)
- ME is the margin of error (8)
then N≥
≈150.6
Thus at least 151 sample is needed for 95% probability that sample mean falls within 8$ of the population mean.
Would it be 3.4, 4.3, 5.2, 6.1, 7
By using the information given on the graph, we can see that a = 3.
<h3>
How to find the value of a?</h3>
Here we have an exponential of the form:

And by looking at the graph, it passes through (0, 4) and (2, 36), so we can write:

From the first equation we get that p = 4, replacing that on the second one we get:

So we conclude that a = 3.
If you want to learn more about exponential equations:
brainly.com/question/11832081
#SPJ1
Answer: -1 < x < 8
x = 3
x ≠ 2
<u>Step-by-step explanation:</u>
Isolate x in the middle. Perform operations to all 3 sides.
-6 < 2x - 4 < 12
<u>+4 </u> <u> +4</u> <u>+4 </u>
-2 < 2x < 16
<u>÷2 </u> <u>÷2 </u> <u> ÷2 </u>
-1 < x < 8
**************************************************************************
Isolate x. Solve each inequality separately. Remember to flip the sign when dividing by a negative.
4x ≤ 12 and -7x ≤ 21
<u>÷4 </u> <u>÷4 </u> <u> ÷-7 </u> <u>÷-7 </u>
x ≤ 3 and x ≥ 3
Since it is an "and" statement, x is the intersection of both inequalities.
When is x ≤ 3 and ≥ 3? <em>when x = 3</em>
****************************************************************************
Isolate x. Solve each inequality separately.
15x > 30 or 18x < -36
<u>÷15 </u> <u> ÷15 </u> <u> ÷18 </u> <u>÷18 </u>
x > 2 or x < 2
Since it is an "or" statement, x is the union of both inequalities.
When we combine the inequalities, x is every value except 2.
x ≠ 2