Answer:
117.6°
Explanation:
The vertical component of a force directed at some angle α from the vertical is ...
F·cos(α)
We want the vertical components of the wolf's force (Fw) and Red's force (Fr) to total zero. So for some angle from vertical α, Red's force will satisfy ...
Fw·cos(25°) + Fr·cos(α) = 0
cos(α) = -Fw/Fr·cos(25°) ≈ -(6.4 N)/(12.5 N)·0.906308 ≈ -0.464030
α ≈ arccos(-0.464030) ≈ 117.6°
Red was pulling at an angle of about 117.6° from the vertical.
_____
<em>Additional comment</em>
That's about 27.6° below the horizontal.
The centripetal acceleration of an object is given by the relation,

where Ac = centripetal acceleration =
R = radius of rotation = 15 m
V = speed of astronaut
Hence, 
solving this we get, V = 38.34 m/s
The potential energy of the block is A) 490 J
Explanation:
The potential energy of an object is the energy possessed by the object due to its position in the gravitational field.
It is calculated as follows:

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object above the ground
For the block in this problem, we have:
m = 10 kg

h = 5 m
Therefore, its potential energy is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Which element is magnetic?
Answer
cobalt