Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Energy can neither be created e destroyed. It can only be transferred from one form to another. Implying this law and the above explainations we conclude that at the bottom of the pendulum,the potential energy=0 and the kinetic energy=294J as the entire potential energy is converted to kinetic energy at the bottom.
Answer:
ω = 12.023 rad/s
α = 222.61 rad/s²
Explanation:
We are given;
ω0 = 2.37 rad/s, t = 0 sec
ω =?, t = 0.22 sec
α =?
θ = 57°
From formulas,
Tangential acceleration; a_t = rα
Normal acceleration; a_n = rω²
tan θ = a_t/a_n
Thus; tan θ = rα/rω² = α/ω²
tan θ = α/ω²
α = ω²tan θ
Now, α = dω/dt
So; dω/dt = ω²tan θ
Rearranging, we have;
dω/ω² = dt × tan θ
Integrating both sides, we have;
(ω, ω0)∫dω/ω² = (t, 0)∫dt × tan θ
This gives;
-1[(1/ω_o) - (1/ω)] = t(tan θ)
Thus;
ω = ω_o/(1 - (ω_o × t × tan θ))
While;
α = dω/dt = ((ω_o)²×tan θ)/(1 - (ω_o × t × tan θ))²
Thus, plugging in the relevant values;
ω = 2.37/(1 - (2.37 × 0.22 × tan 57))
ω = 12.023 rad/s
Also;
α = (2.37² × tan 57)/(1 - (2.37 × 0.22 × tan 57))²
α = 8.64926751525/0.03885408979 = 222.61 rad/s²
<h2>
The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.</h2>
Explanation:
Electric field is the ratio of force and charge.
Electric field, E = 280000 N/C
Charge, q = -7.9 C
We have

The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.
Answer:
Explanation:
Let v is the launch speed of the plastic ball and the angle of projection is θ.
So, in horizontal direction
v Cosθ x t = 4.8 .... (1)
In th evertical direction
1.4 = v Sin θ x t - 0.5 gt² .... (2)
As , v Sin θ x t = 3.8 .... (3) , put in equation (2)
1.4 = 3.8 - 4.9 t²
t = 0.7 s
Put in (1) and (3)
v Cosθ x 0.7 = 4.8
v Cosθ = 6.86
and v Sinθ x 0.7 = 3.8
v Sinθ = 5.43
Now

v = 8.75 m/s
Answer:
The velocity of the man is 0.144 m/s
Explanation:
This is a case of conservation of momentum.
The momentum of the moving ball before it was caught must equal the momentum of the man and the ball after he catches the ball.
Mass of ball = 0.65 kg
Mass of the man = 54 kg
Velocity of the ball = 12.1 m/s
Before collision, momentum of the ball = mass x velocity
= 0.65 x 12.1 = 7.865 kg-m/s
After collision the momentum of the man and ball system is
(0.65 + 54)Vf = 54.65Vf
Where Vf is their final common velocity.
Equating the initial and final momentum,
7.865 = 54.65Vf
Vf = 7.865/54.65 = 0.144 m/s