The generic equation of a parabola is:
f (x) = ax ^ 2 + bx + c
To verify the equation of the parabola you need three points:
f (x) = ax ^ 2 + bx + c
We choose the points:
(x, y) = (- 1,7)
7 = a (-1) ^ 2 + b (-1) + c
7 = a - b + c
(x, y) = (0,5)
5 = a (0) ^ 2 + b (0) + c
5 = c
(x, y) = (- 2,5)
5 = a (-2) ^ 2 + b (-2) + c
5 = 4a - 2b + c
We solve:
c = 5
5 = 4a - 2b + 5
7 = a - b + 5
Rewriting
b = 2a
a-b = 2
Substituting:
a-2a = 2
a = -2
b = -4
The equation of the parabola is:
f (x) = - 2x ^ 2 -4x + 5
Hello,
I)
1 solution with multiplicity 2
(2x+1)²=0
II) ANSWER C (-4.41, -1.59)
-3-√2 and -3+√2
III)
y=x²+2x
y=3x+20
==>x²+2x=3x+20
==>x²-x-20=
Δ=1+4*20=81=9²
(x=(1-9)/2=-4 and y= 3*(-4)+20=8 ) or (x=(1+9)/2=5 and y=3*5+20=35)
Two hundred
200
100+100
50*4
0+200
hundred + hundred
150 + 50
1000-800
500-300
300-100
<h3>Answers :-</h3>
- sinB = 12/13
- cosB = 5/13
- tanB = 12/5
Here as by the given information ,
♦ sinA = Opposite/Hypotenuse
♦ cosA = Adjacent/Hypotenuse
♦ TanA = Opposite/adjacent
So here we need to find the same for angle B so we need to use the same formulas for angle B also .
→ sinB = Opposite/Hypotenuse = 12/13
→ cosB = Adjacent/Hypotenuse = 5/13
→ tanB = Opposite/Adjacent = 12/5


<h2><u>hope</u><u> it</u><u> helps</u></h2>
<u>kindly</u><u> </u><u>see </u><u>the</u><u> attachment</u>