Answer:
No
Explanation:
There is only one Nitrogen on the left side while there are 2 on the right. Also there is zero oxygen on the left side and two on the right. The amounts of hydrgen arent equal to each side either.
To test if the hypothesis is correct, a good way is to think of it this way:
Density = mass/volume, right?
Calculate the mass and volume of each and do the equation; this will test your hypothesis.
You will be left with the density of each. But, make sure that the sample sizes are the same (controlled variable) otherwise it will be an unfair test.
Key to understanding scuba diving is the concept of pressure, and how it varies with depth. We intuitively understand that pressure is some type of force, but how is it actually defined? Pressure is a force or weight<span> per unit area. All matter, </span>including air<span>, has weight due to earth's gravity. Accordingly, anything exposed to air is under pressure - the weight of the atmosphere above it. This weight of air, due to gravity, is known as </span>atmospheric pressure<span> </span>
Answer:
ΔHrxn = -635.14kJ/mol
Explanation:
We can make algebraic operations of reactions until obtain the desire reaction and, ΔH of the reaction must be operated in the same way to obtain the ΔH of the desire reaction (Hess's law). Using the reactions:
(1)Ca(s) + 2 H+(aq) → Ca2+(aq) + H2(g) ΔH = 1925.9 kJ/mol
(2) 2H2(g) + O2 g) → 2 H2O(l) ΔH = −571.68 kJ/mole
(3) CaO(s) + 2 H+(aq) → Ca2+(aq) + H2O(l) ΔH = 2275.2 kJ/mole
Reaction (1) - (3) produce:
Ca(s) + H2O(l) → H2(g) + CaO(s)
ΔH = 1925.9kJ/mol - 2275.2kJ/mol = -349.3kJ/mol
Now this reaction + 1/2(2):
Ca(s) + ½ O2(g) → CaO(s)
ΔH = -349.3kJ/mol + 1/2 (-571.68kJ/mol)
<h3>ΔHrxn = -635.14kJ/mol</h3>