Answer:
<h3>
<u>7. Ans ;</u></h3>
![\frac{41}{3} < 14 < \sqrt{200}](https://tex.z-dn.net/?f=%20%5Cfrac%7B41%7D%7B3%7D%20%20%3C%2014%20%3C%20%20%5Csqrt%7B200%7D%20)
<h3>
<u>8</u><u>.</u><u> </u><u>Ans</u><u> </u><u>;</u></h3>
<u>
</u>
Step-by-step explanation:
<h3>
<u>7. Ans ;</u></h3>
![\sqrt{200} = 10 \sqrt{2} = 14.1 \\ 14 = 14 \\ \frac{41}{3} = 13.6](https://tex.z-dn.net/?f=%20%5Csqrt%7B200%7D%20%20%3D%2010%20%5Csqrt%7B2%7D%20%20%3D%2014.1%20%5C%5C%2014%20%3D%2014%20%5C%5C%20%20%5Cfrac%7B41%7D%7B3%7D%20%20%3D%2013.6)
So ;
![\frac{41}{3} < 14 < \sqrt{200} \\ 13.6 < 14 < 14.1](https://tex.z-dn.net/?f=%20%5Cfrac%7B41%7D%7B3%7D%20%20%3C%2014%20%3C%20%20%5Csqrt%7B200%7D%20%20%5C%5C%2013.6%20%3C%2014%20%3C%2014.1)
<h3><u>
8. Ans ;</u></h3>
![\frac{2}{3} = 0.66 \\ \sqrt{ \frac{9}{16} } = \frac{3}{4} = 0.75 \\ 0.6 = 0.6](https://tex.z-dn.net/?f=%20%5Cfrac%7B2%7D%7B3%7D%20%20%3D%200.66%20%5C%5C%20%20%5Csqrt%7B%20%5Cfrac%7B9%7D%7B16%7D%20%7D%20%20%20%3D%20%20%20%5Cfrac%7B3%7D%7B4%7D%20%20%3D%200.75%20%5C%5C%200.6%20%3D%200.6)
So ;
![0.6 < \frac{2}{3} < \sqrt{ \frac{9}{16} } \\ 0.6 < 0.66 < 0.75](https://tex.z-dn.net/?f=0.6%20%3C%20%20%5Cfrac%7B2%7D%7B3%7D%20%20%3C%20%20%5Csqrt%7B%20%5Cfrac%7B9%7D%7B16%7D%20%7D%20%20%5C%5C%200.6%20%3C%200.66%20%3C%200.75)
I hope I helped you^_^
to find the area of the figure, you first need to find the area of the separate figures: a triangle and a square.
first, find the area of the triangle:
multiply 13 and 5 to get 65.
divide 65 by 2.
32.5.
then, find the area of the rectangle:
multiply 5 and 14 to get 70.
add those answers up, and you get:
102.5
Answer: Vertex = (2, -15) 2nd point = (0, -3)
<u>Step-by-step explanation:</u>
g(x) = 3x² - 12x - 3
= 3(x² - 4x - 1)
a=1 b=-4 c=-1
Find the x-value of the vertex by using the formula for the axis of symmetry: ![x = \dfrac{-b}{2a}](https://tex.z-dn.net/?f=x%20%3D%20%5Cdfrac%7B-b%7D%7B2a%7D)
![x = \dfrac{-(-4)}{2(1)}](https://tex.z-dn.net/?f=x%20%3D%20%5Cdfrac%7B-%28-4%29%7D%7B2%281%29%7D)
![= \dfrac{4}{2}](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B4%7D%7B2%7D)
= 2
Find the y-value of the vertex by plugging the x-value (above) into the given equation: g(x) = 3x² - 12x - 3
g(2) = 3(2)² - 12(2) - 3
= 12 - 24 - 3
= -15
So, the vertex is (2, -15) ← PLOT THIS COORDINATE
Now, choose a different x-value. Plug it into the equation and solve for y. <em>I chose x = 0</em>
g(0) = 3(0)² - 12(0) - 3
= 0 - 0 - 3
= -3
So, an additional point is (0, -3) ← PLOT THIS COORDINATE
Extraneous solutions are the values that we get when solving equations which aren't really solutions to the equation.
<h3>
What are extraneous solutions?</h3>
Your information is incomplete. Therefore, an overview will be given. An extraneous solution is the root of a transformed equation which is not a root of the original equation since it was excluded from the domain of the original equation.
The reason extraneous solutions exist is simply that some operations produce extra answers, and these operations are a part of the path to solving the problem.
Learn more about equations on:
brainly.com/question/2972832
The perimeter would be (24x - 40)/(x^2 - 4x).
In order to find this, first double the length and width as you would to find any perimeter.
7/(x - 4) * 2 = 14/(x - 4)
5/x * 2 = 10/x
Now to add those together, we need to give them common denominators. In order to do that with the first one, we need to multiply by x/x
14/(x - 14) * x/x = 14x/(x^2 - 14x)
Then we can do the same with the second part by multiplying by (x - 4)/(x - 4)
10/x * (x - 4)/(x - 4) = (10x - 40)/(x^2 - 14x)
Now we can add the two together
14x/(x^2 - 14x) + (10x - 40)/(x^2 - 14x) = (24x - 40)/(x^2 - 14x)