Answer:
if it is slowing down than it is gaining potential energy
Explanation:
Answer:
Time, t = 4.08 secs
Explanation:
<u>Given the following data;</u>
Initial velocity, U = 40m/s
To find the time, we would use the first equation of motion;
Where;
- U is the initial velocity.
- t is the time measured in seconds.
<em>Making time, t the subject of formula, we have;</em>
We know that acceleration due to gravity, g is 9.8m/s².
a = g = - 9.8m/s² because the ball is thrown in the opposite direction.
Also, the final velocity is equal to zero (0) because the ball reached its maximum height.
<em>Substituting into the equation, we have;</em>
Time, t = 4.08 secs
<em>Therefore, it will take the ball 4.08 seconds to reach the top. </em>
Answer:
a
Solid Wire
Stranded Wire ![I_2 = 0.00978 \ A](https://tex.z-dn.net/?f=I_2%20%20%3D%20%20%200.00978%20%5C%20%20A%20)
b
Solid Wire
Stranded Wire
Explanation:
Considering the first question
From the question we are told that
The radius of the first wire is ![r_1 = 1.53 mm = 0.0015 \ m](https://tex.z-dn.net/?f=r_1%20%20%3D%201.53%20mm%20%3D%200.0015%20%5C%20%20m)
The radius of each strand is ![r_0 = 0.306 \ mm = 0.000306 \ m](https://tex.z-dn.net/?f=r_0%20%3D%20%200.306%20%5C%20mm%20%3D%20%200.000306%20%5C%20m)
The current density in both wires is ![J = 1750 \ A/m^2](https://tex.z-dn.net/?f=J%20%20%3D%20%201750%20%5C%20%20A%2Fm%5E2)
Considering the first wire
The cross-sectional area of the first wire is
![A = \pi r^2](https://tex.z-dn.net/?f=A%20%20%20%3D%20%5Cpi%20%20r%5E2)
= >
= >
Generally the current in the first wire is
![I = J*A](https://tex.z-dn.net/?f=I%20%20%3D%20%20J%2AA)
=> ![I = 1750*7.0695 *10^{-6}](https://tex.z-dn.net/?f=I%20%20%3D%20%201750%2A7.0695%20%2A10%5E%7B-6%7D)
=>
Considering the second wire wire
The cross-sectional area of the second wire is
![A_1 = 19 * \pi r^2](https://tex.z-dn.net/?f=A_1%20%20%3D%20%2019%20%2A%20%20%5Cpi%20r%5E2)
=> ![A_1 = 19 *3.142 * (0.000306)^2](https://tex.z-dn.net/?f=A_1%20%20%3D%20%2019%20%2A3.142%20%2A%20%20%280.000306%29%5E2)
=> ![A_1 = 5.5899 *10^{-6} \ m^2](https://tex.z-dn.net/?f=A_1%20%20%3D%20%205.5899%20%2A10%5E%7B-6%7D%20%5C%20%20m%5E2)
Generally the current is
![I_2 = J * A_1](https://tex.z-dn.net/?f=I_2%20%20%3D%20%20J%20%20%2A%20%20A_1)
=> ![I_2 = 1750 * 5.5899 *10^{-6}](https://tex.z-dn.net/?f=I_2%20%20%3D%20%20%201750%20%20%2A%20%205.5899%20%2A10%5E%7B-6%7D%20)
=> ![I_2 = 0.00978 \ A](https://tex.z-dn.net/?f=I_2%20%20%3D%20%20%200.00978%20%5C%20%20A%20)
Considering question two
From the question we are told that
Resistivity is ![\rho = 1.69* 10^{-8} \Omega \cdot m](https://tex.z-dn.net/?f=%5Crho%20%20%3D%20%201.69%2A%2010%5E%7B-8%7D%20%5COmega%20%5Ccdot%20m)
The length of each wire is ![l = 6.25 \ m](https://tex.z-dn.net/?f=l%20%3D%20%206.25%20%5C%20%20m)
Generally the resistance of the first wire is mathematically represented as
=>
=>
Generally the resistance of the first wire is mathematically represented as
=>
=>
Answer:
2.5
Explanation:2.5 +2.5 = 5.0