7.Jupiter is the largest planet in our solar system at nearly 11 times the size of Earth and 317 times its mass.
When we look at Jupiter, we're actually seeing the outermost layer of its clouds.
The Great Red Spot is a storm in Jupiter's southern hemisphere with crimson-colored clouds that spin counterclockwise at wind speeds
8. 58,232 km
The second largest planet in the solar system
Surface. As a gas giant, Saturn doesn't have a true surface. The planet is mostly swirling gases and liquids deeper down.
Saturn's rings are thought to be pieces of comets, asteroids or shattered moons that broke up before they reached the planet,
9. Unlike the other planets of the solar system, Uranus is tilted so far that it essentially orbits the sun on its side, with the axis of its spin nearly pointing at the star.
Uranus' atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia.
As an ice giant, Uranus doesn't have a true surface. The planet is mostly swirling fluids. While a spacecraft would have nowhere to land on Uranus, it wouldn't be able to fly through its atmosphere unscathed either. The extreme pressures and temperatures would destroy a metal spacecraft.
10. 24,622 km
Neptune has an average temperature of -353 Fahrenheit (-214 Celsius).
Neptune's atmosphere is made up mostly of hydrogen and helium with just a little bit of methane.
With a 30 mph head wind it takes the plane 18.52 hours to fly 5000 miles. ANSWER 2: With a 30 mph tail wind it takes the plane 15.15 hours to fly 5000 miles.
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.
Power is the rate work done given by dividing work done by unit time. It is measured in watts equivalent to J/s.
In this case the force by the student is mg = 490 N (taking g as 9.8m/s²)
Work done is given by force × distance,
Therefore, Power =(force × distance)/ time, but velocity/speed =distance/time
Thus, Power = force × speed/velocity
= 490 N × 1.25
= 612.5 J/S (Watts)
Hence, power will be 612.5 Watts.