Answer:
d, 40 dm3.
Explanation:
According to Avogadro's law, the mole ratio of chemicals in a reaction is equal to the ratio of volumes of chemicals reacted (for gas).
From the equation, the mole ratio of N2 : H2 : NH3 = 1 : 3 : 2, meaning 1 mole of N2 reacts completely with 3 moles of H2 to give 2 moles of NH3, the ratio of volume required is also equal to 1 : 3 : 2.
Considering both N2 and H2 have 30dm3 of volume, but 1 mole of N2 reacts completely with 3 moles of H2, so we can see H2 is limiting while N2 is in excess. Using the ratio, we can deduce that 10dm3 equals to 1 in ratio (because 3 moles ratio = 30dm3).
With that being said, all H2 has reacted, meaning there's no volume of H2 left. 2 moles of NH3 is produced, meaning the volume of NH3 produced = 10 x 2 = 20 dm3. (using the ratio again)
1 mole of N2 has reacted, meaning from the 30dm3, only 10 dm3 has reacted. This also indicate that 20 dm3 of N2 has not been reacted.
So at the end, the mixture contains 20dm3 of NH3, and 20 dm3 of unreacted N2. Hence, the answer is d, 40 dm3.
Answer: Ionic bonds result from transfer of electrons, whereas covalent bonds are formed by sharing. ... Ionic bonds are electrostatic in nature, resulting from that attraction of positive and negative ions that result from the electron transfer process; charge separation between covalently bonded atoms is less extreme.
Explanation:
Answer;
-(2) An atom is mostly empty space.
Experiment
-Rutherford conducted the "gold foil" experiment where he shot alpha particles at a thin sheet of gold. The conclusion that can be drawn from these experiment is that an atom is mostly empty space.
-Rutherford found that a small percentage of the particles were deflected, while a majority passed through the sheet. This caused Rutherford to conclude that the mass of an atom was concentrated at its center, as the tiny, dense nucleus was causing the deflections.
Answer:
It would be Density because:
Density= mass/ volume
Density refers to the amount of matter or mass of a substance over a volume
Jenny puts the ph paper and lines it up PH SCALE to find how strong the solution.