A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
<h3>What is Combined Gas Law ?</h3>
This law combined the three gas laws that is (i) Charle's Law (ii) Gay-Lussac's Law and (iii) Boyle's law.
It is expressed as

where,
P₁ = first pressure
P₂ = second pressure
V₁ = first volume
V₂ = second volume
T₁ = first temperature
T₂ = second temperature
Now put the values in above expression we get



P₂ = 1.76 atm
Thus from the above conclusion we can say that A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
Learn more about the Combined gas Law here: brainly.com/question/13538773
#SPJ4
45 molecules of chlorine gas (Cl₂) are needed to react with 30 atoms of aluminum (Al)
The balanced equation for the reaction is given below:
2Al + 3Cl₂ —> 2AlCl₃
From the balanced equation above,
2 atoms of Al required 3 molecules of Cl₂.
With the above information, we can determine the number of molecules of Cl₂ needed to react with 30 atoms of Al. This can be obtained as follow:
From the balanced equation above,
2 atoms of Al required 3 molecules of Cl₂.
Therefore,
30 atoms of Al will require =
= 45 molecules of Cl₂.
Thus, 45 molecules of chlorine gas (Cl₂) are needed to react with 30 atoms of aluminum (Al)
Learn more: brainly.com/question/24918379
Answer:
proposing a hypothesis.
Explanation: Therefore the last step in the scientific method is proposing a hypothesis or obtaining a conclusion.
Answer:

Explanation:
Let us first take a look at the image below;
In the acid - base reaction; we can see the transfer of electrons that takes place;
We can also see that the reaction goes in the direction which converts the stronger acid and the stronger base to the weaker acid and the weaker base.
The stronger acid is shown with the one with more negative
Value.
∴ The equilibrium constant for the acid-base reaction is expressed as:


From
Value (shown in the image below), it is clear and vivid that hydrobromic acid is a stronger acid than the ethyloxonium ion, therefore the equilibrium lies to the right.
From the chemical equation (shown in the attached image); the equilibrium constant for the acid-base reaction can be expressed as:


