Particles of gas are more scarcely placed as compared to that of liquid.
the intermolecular forces will be less in gaseous state and hence is less stable
Answer:- Molar mass of
.
Solution:- It is a stoichiometry problem. Mass of the grill is 30.0 kg and the mass after burning the grill is also 30.0 kg. It means all the charcol is burned and the gas is given off.
2.0 kg of charcol are converted to grams which is 2000 g. Since charcol is pure solid carbon, the grams are divided by the atomic mass of carbon which is 12.
The combustion equation of charcol is written as:

From this balanced equation, there is 1:1 mol ratio between charcol and carbon dioxide. So, the moles of carbon dioxide gas formed are equivalent to the moles of charcol. To convert the moles of carbon dioxide to grams we multiply the moles by it's molar mass.
Carbon dioxide has one carbon and two oxygen atoms so it's molar mass = 12 + 2(16) = 12 + 32 = 44
So, 44 is the molar mass of carbon dioxide and above calculations clearly shows how and where we get this.
Radiated would be the answer
Answer:
Thus, the order of the reaction is 2.
The rate constant of the graph which is :- 2.00 M⁻¹s⁻¹
Explanation:
The kinetics of a reaction can be known graphically by plotting the concentration vs time experimental data on a sheet of graph.
The concentration vs time graph of zero order reactions is linear with negative slope.
The concentration vs time graph for a first order reactions is a exponential curve. For first order kinetics the graph between the natural logarithm of the concentration vs time comes out to be a straight graph with negative slope.
The concentration vs time graph for a second order reaction is a hyberbolic curve. Also, for second order kinetics the graph between the reciprocal of the concentration vs time comes out to be a straight graph with positive slope.
Considering the question,
A plot of 1/[NOBr] vs time give a straight line with a slope of 2.00 M⁻¹s⁻¹.
<u>Thus, the order of the reaction is 2.</u>
<u>Also, slope is the rate constant of the graph which is :- 2.00 M⁻¹s⁻¹</u>