Answer:
![\boxed{x = 7, y = 9, z = 68}](https://tex.z-dn.net/?f=%5Cboxed%7Bx%20%3D%207%2C%20y%20%3D%209%2C%20z%20%3D%2068%7D)
Step-by-step explanation:
We must develop three equations in three unknowns.
I will use these three:
![\begin{array}{lrcll}(1) & 8x + 13y +7 & = & 180 & \\(2)& 9x - 7 + 13y +7 & = & 180 & \\(3)& 8x + 5y - 11 + z & = & 180 &\text{We can rearrange these to get:}\\(4)& 8x + 13y & = & 173 &\\(5) & 9x + 13y & = & 180 & \\(6)& 8x + 5y + z & = & 169 & \\(7)& x & = & \mathbf{7} & \text{Subtracted (4) from (5)} \\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Blrcll%7D%281%29%20%26%208x%20%2B%2013y%20%2B7%20%26%20%3D%20%26%20180%20%26%20%5C%5C%282%29%26%209x%20-%207%20%2B%2013y%20%2B7%20%26%20%3D%20%26%20180%20%26%20%5C%5C%283%29%26%208x%20%2B%205y%20-%2011%20%2B%20z%20%26%20%3D%20%26%20180%20%26%5Ctext%7BWe%20can%20rearrange%20these%20to%20get%3A%7D%5C%5C%284%29%26%208x%20%2B%2013y%20%26%20%3D%20%26%20173%20%26%5C%5C%285%29%20%26%209x%20%2B%2013y%20%26%20%3D%20%26%20180%20%26%20%5C%5C%286%29%26%208x%20%2B%205y%20%2B%20z%20%26%20%3D%20%26%20169%20%26%20%5C%5C%287%29%26%20x%20%26%20%3D%20%26%20%5Cmathbf%7B7%7D%20%26%20%5Ctext%7BSubtracted%20%284%29%20from%20%285%29%7D%20%5C%5C%5Cend%7Barray%7D)
![\begin{array}{lrcll}& 8(7) + 13y & = & 173 & \text{Substituted (7) into (4)} \\& 56 + 13y & = & 173 & \text{Simplified} \\& 13y & = & 117 & \text{Subtracted 56 from each side} \\(8)& y & =& \mathbf{9}&\text{Divided each side by 13}\\& 8(7) + 5(9) + z & = & 169 & \text{Substituted (8) and (7) into (6)} \\& 56 + 45 + z& = & 169 & \text{Simplified} \\& 101 + z& = & 169 & \text{Simplified} \\&z& = & \mathbf{68} & \text{Subtracted 101 from each side}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Blrcll%7D%26%208%287%29%20%2B%2013y%20%26%20%3D%20%26%20173%20%26%20%5Ctext%7BSubstituted%20%287%29%20into%20%284%29%7D%20%5C%5C%26%2056%20%2B%2013y%20%26%20%3D%20%26%20173%20%26%20%5Ctext%7BSimplified%7D%20%5C%5C%26%2013y%20%26%20%3D%20%26%20117%20%26%20%5Ctext%7BSubtracted%2056%20from%20each%20side%7D%20%5C%5C%288%29%26%20y%20%26%20%3D%26%20%5Cmathbf%7B9%7D%26%5Ctext%7BDivided%20each%20side%20by%2013%7D%5C%5C%26%208%287%29%20%2B%205%289%29%20%2B%20z%20%26%20%3D%20%26%20169%20%26%20%5Ctext%7BSubstituted%20%288%29%20and%20%287%29%20into%20%286%29%7D%20%5C%5C%26%2056%20%2B%2045%20%2B%20z%26%20%3D%20%26%20169%20%26%20%5Ctext%7BSimplified%7D%20%5C%5C%26%20101%20%2B%20z%26%20%3D%20%26%20169%20%26%20%5Ctext%7BSimplified%7D%20%5C%5C%26z%26%20%3D%20%26%20%5Cmathbf%7B68%7D%20%26%20%5Ctext%7BSubtracted%20101%20from%20each%20side%7D%5C%5C%5Cend%7Barray%7D)
![\boxed{\mathbf{ x = 7, y = 9, z = 68}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathbf%7B%20x%20%3D%207%2C%20y%20%3D%209%2C%20z%20%3D%2068%7D%7D)
Answer:
C
Step-by-step explanation:
Oh how I miss the days when math was as simple as 2+2=4.
Educated guess here: By putting parentheses.
Hey there! :D
The midpoint and the outside line are symmetrical to eachother, 2(BF)= AE
Two midpoint segments equals one AE segment.
So, use the representation above and plug in the numbers.
2(23)= 5x -4
56= 5x-4
Add 4 to both sides.
60=5x
Divide by the 5.
x=12
I hope this helps!
~kaikers <3