Answer:
When the partially positive end of one water molecule is attracted to the partially negative end of another water molecule
Explanation:
The type of fat that is described above is the trans fat. The trans fat is artificially made and these fat contains partially hydrogenated oils which is similar to the statement above. The reason why they are added to oil like vegetable oils so that there property could become solid.
Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Answer:
B. Na and Li
Both are group I elements.
Answer:
0.0277 M.
Explanation:
The integral rate law of a first order reaction:
<em>Kt = ln ([A₀]/[A]),</em>
where, k is the rate constant of the reaction <em>(k = 3.36 × 10⁻⁵ s⁻¹)</em>,
t is the time of the reaction <em>(t = 235.0 min = 14100 s)</em>,
[A₀] is the initial concentration of cyclopropane <em>([A₀] = 0.0445 M)</em>
<em>∵ Kt = ln ([A₀]/[A]),</em>
∴ (3.36 × 10⁻⁵ s⁻¹)(14100 s) = ln (0.0445 M)/[A]
Taking the exponential of both sides:
1.6 = (0.0445 M)/[A]
<em>∴ [A] = (0.0445 M)/1.6 = 0.0277 M.</em>
<em />