Just multiply 1/6 it's the scale factor so it'll tell you how you will shrink or enlarge the length
Subtracting the second equation by 18 on both sides, we have xy=-18. Next, we divide both sides by x to get y=-18/x Plugging that into the first equation, we have x+2(-18/x)=9. Multiplying both sides by x, we get x^2-36=9x. After that, we subtract both sides by 9x to get x^2-9x-36=0. Finding 2 numbers that add up to -9 but multiply to -36, we do a bit of guess and check to find the answers to be -12 and 3. Factoring it, we get
x^2-12x+3x-36=x(x-12)+3(x-12)=(x+3)(x-12). To find the x values, we have to find out when 0=(x+3)(x-12). This is simple as when you multiply 0 with anything, it is 0. Therefore, x=-3 and 12. Plugging those into x=-18/y, we get x=-18/y and by multiplying y to both sides, we get xy=-18 and then we can divide both sides by x to get -18/x=y. Plugging -3 in, we get -18/-3=6 and by plugging 12 in we get -18/12=-1.5. Therefore, our points are (-3,6) and (12, -1.5)
Answer:
The 38th term of 459,450,441,.. will be:
Step-by-step explanation:
Given the sequence
An arithmetic sequence has a constant difference 'd' and is defined by
computing the differences of all the adjacent terms
so
The first element of the sequence is
so the nth term will be
Putting n=38 to find the 38th term
Therefore, the 38th term of 459,450,441,.. will be:
The two points are (x, f(x)) and (x+h, f(x+h)). To find the slope, the definition is the change in y over the change of x. Does this sound familiar!! Applying this definition we get the following formula: and the points x<span>1 = 2 and x2 = 4. Then in our general answer, we will replace x with x1 and h = x2 - x1. Replacing these values in the formula yields 2(2) + (4 - 2) = 4 + 2 = 6. Thus, the slope of the secant line connecting the two points of the function is 6. </span><span>Now using the same function as above, find the average rate of change between x1 = -1 and x2<span> = -3. The answer is 2(-1) + ( -3 + 1) = -2 + -2 = -4. This means that the secant line is going downhill or decreasing as you look at it from le</span></span>
-- The graph looks like a line that passes through the origin,
and slopes up to the right at a 45-degree angle.
-- Point #1 on the line:
. . . . . Pick any number.
. . . . . Write it down twice.
. . . . . Call the first one 'x'. Call the second one 'y'.
-- Point #2 on the line:
. . . . . Pick any other number.
. . . . . Write it down twice.
. . . . . Call the first one 'x'. Call the second one 'y'.
-- Point #3 on the line:
. . . . . Pick any other number.
. . . . . Write it down twice.
. . . . . Call the first one 'x'. Call the second one 'y'.
Rinse and repeat, as many times as you like,
until the novelty wears off and you lose interest.