1st problem:
Use the Pythagorean theorem:
a^2+b^2=c^2
49+361=c^2
c^2=410
c=20.24
The answer is 20m
2nd problem:
First calculate the height using the Pythagorean theorem:
a^2+b^2=c^2
20^2+b^2=625 (i got 20 {radius} by half-ing the base edge length)
400+b^2=625
b^2=225
b=15
Next, solve for the volume:
V=a^2*h/3
V=40^2*15/3
V=1600*5
V=8000
The answer is the second choice or B.
Answer:
The number of once is 9.1
The number of hundreds is 8.9
Step-by-step explanation:
Given as :
The total of digits having ones and hundreds = 900
The sum of digits = 18
Let The number of ones digit = O
And The number of hundreds digit = H
So, According to question
H + O = 18 .........1
100 × H + 1 × O = 900 ........2
Solving the equation
( 100 × H - H ) + ( O - O ) = 900 - 18
Or, 99 H + 0 = 882
Or , 99 H = 882
∴ H = 
I.e H = 8.9
Put the value of H in eq 1
So, O = 18 - H
I.e O = 18 - 8.9
∴ O = 9.1
So, number of once = 9.1
number of hundreds = 8.9
Hence The number of once is 9.1 and The number of hundreds is 8.9
Answer